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Preface

The basis of the educational and methodological manual is based on the lectures
that the authors for many years had read for the students of the Drohobych Ivan Franko
State Pedagogical University.

Despite the completeness of the Theory of Analytical Functions, some of its
subsections (theory of entire, meromorphic, subharmonious functions represented by
different series) require significant researches, which need the study of the properties
of positive functions.

To understand the text of the manual, you need to familiarize with complex
numbers, algebraic operations on them and to know the basics of Mathematical
Analysis and the Theory of Analytical Functions.

In the chapter "Positive functions” students have the opportunity to recall the
concept of the limit of the function, to get acquainted with some classes of positive
functions, as well as with the classical scale of their growth.

In the chapter "Entire functions™ such concepts as maximum modulus, maximum
term, order and type of the entire function given by the power series, zeros and the
expanding of the function into the infinite product are characterized.

In the chapter "Dirichlet Series" the representation by the Dirichlet series the
entire and analytical in a half-plane functions as generalizations of power series are
considered.

Theoretical material is widely illustrated by the solvable examples, tasks for
independent work, control questions.

The manual will be interested for those students who plan to study in the

magistracy and postgraduate studies, as well as for teachers for the group work.



IHepeamoBa

B ocHOBY HaBUaJIbHO-METOJUYHOTO NMOCIOHMKA MOKIAJEHO JIEKLIi, Kl aBTOpU
IpOTAroM 0aratbOX pPOKIB YUTaIM ISl CTYIEHTIB J[pOroOMIIBKOrO JIepkKaBHOTO
MEeJaroriyHoro yHiBepcuTeTy iMeHl1 IBaHa.

He3Bakatoum Ha 3aBepIICHICTh TeOpli AHANITUYHUX QYHKIIA, JOedki ii
iApo3aUIH (Teopis LUIUX, MEPOMOPPHUX, CyOrapMOHIMHUX (YHKLINA, 300paskeHUX
TUMHU YW HITAMHU PSIIaMU) BUMAraroTh ICTOTHUX JTOCTIIKEHb, 1[0 YaCTO 3BOJSITHCS JI0
BUBUCHHS BJIACTUBOCTEH J]0JIATKOBUX () YHKIIIH.

[I{06 3p0o3yMiTH TEKCT MOCIOHUKA, HEOOX1THO 03HAMOMUTHCS 3 KOMIUIEKCHUMU
qrclaMu, anreOpaldHuMu JisIMH HAJl HUMH, a TaKOX 3HATH OCHOBH MAaTEMaTUYHOTO
aHai3y Ta Teopii aHANITUYHUX (PYHKITIH.

Y poszauni «JlomatHi (QyHKIID» CTYAEHTH MalTh MOXIUBICTh IPUTAATH
MOHSATTS TpaHuIll PYHKIII1, 03HAMOMHUTHCS 3 ACSIKUMHU KJacaMM JOJaTHUX (QYHKIIIH, a
TaKOX 3 KJIJACUYHOIO IIKAJIO0 1X 3pOCTaHHS.

VY po3aimi «Limi QyHKIil» oxapakTepu30BaHI TakKi MOHSTTS, K MaKCUMyM
MOJIyJIsl, MAKCUMAJIbHUM YJIeH, MOPSIOK 1 THIM LI01 QYHKI, 3aaHOi CTENEHEBUM
pAIOM, HYJII 1 pO3BUHEHHS QYHKIIT y HECKIHUCHHUI JOOYTOK.

VY po3nini «Psanu Jlipixie» po3riasaaeTbes 300paxeHHs MUIUX Ta aHATITHYHUX Y
miBIUTONIMHI PYHKITIH psagamu Jlipixie sSK y3aralbHEHHSIMH CTEIIEHEBUX PSJIIB.

TeopeTnunuii Matepiaq MIMPOKO UIFOCTPYETHCS PO3B’SA3HUMHU MPHUKIATAMH,
3aBJIaHHIMU JJII CAMOCTIHHOT poOOTH, KOHTPOJIBHUMHU MUTAHHIMH.

[Tocibumk Oyze mikaBUi CTyI€HTaM, SIKi IJIAHYIOTh HABYATHCS B MaricTpaTypi

Ta aCHiPaHTYyPi, a TAKOK YUYUTEISAM IS TYPTKOBOI pOOOTH.



Section 1. Positive functions

The upper and lower limits of the function

Let @:R—R be an arbitrary function. If there is the sequence (Xn) approaching

to +oo such that (/)(Xn)—> P, when n— o0, then the number p is called the partial

limit of the function ¢ when X — +o0.

Suppose that the set {p} of partial limits of the function ¢ is bounded. Then
there are the finite numbers M =sup{p} and m=inf {p}. Let's prove that M e{p}
and Me {p} To do this, suppose the opposite, that M ¢ {p} I.e. M s not a partial
limit of the function ¢. Then there doesn’t exist the sequence (Xn)—> +00 such that
(p(Xn)—> P when N — 0. It means that there exists a number ¢ that for all X2 XO(E)

takes place @(x)&(M —&, M +¢). It follows that the interval (M — &, M + &) does not

contain the partial limits of the function ¢. But it is impossible according to the

definition of the number M .
So, if the set {p} of partial limits of a function ¢ is bounded, then it has the

largest and smallest elements. The largest of the partial limits is called the upper limit

and is denoted by one of the symbols

limp(x), limsupg(Xx),

X—>+00 X—>+0

and the smallest — the lower limit and is denoted by one of the symbols

lim (x), liminf o(x).

X—>-400 X—>+00

If the set of partial limits is unbounded above or below, then we accept
accordingly

limp(x)=+e0,  lim g(x)=—co.

X—>+00 X—>400

It is clear that the definition of the upper limit can be represented as follows:
9



W{D(X)I A#oo=

X—>+00

{1) (3(x,) = +o)iolx,) > A}

2) (Ve > 0)¥x = x, (¢ )lp(x) < A+ £}
property 1) can be written as
(Ve >0)(x)3x > x, fo(x)> A-g}.
Similarly

_ {1) (3(x,) =+ fe(x,) > a},

lim p(x)=a#o00= 2) (Ve >0)vx=x,()lp(x)>a-&},

X—>+00

and property 1) can be written in the form of
(Ve >0)(wx, NIx>x, fo(x)<a+e}.

If A=—0 then limg(x)= lim ¢p(x)=—oo and if A=+oo then lime(x)=+w. It

X—>+00 X—>+00

means that (H(Xn)—>+oo){go(xn)—>+00}. Similarly, if a=+00 then |im ¢(x)=

X—>+0

limp(x)=+c and if a=-o then limg(x)=—o. In this case

X—>+00

(El(xn ) — +oo){(p(xn ) - —oo}.

It is not difficult to see how these definitions will change, when x —b # +o.

X—>+00

Note some properties of the upper and lower limits.

Lemma 1.1. Inequalities

lim ¢, (x)+ lim @, (x) < lim (¢, (x) + ¢, (x)) < lim g, (x) + lim @, (x) (1.1)
and
lim ¢, (x)+ lim ¢, (x) < lim (@, (x) + @,(x)) < im ¢, (x)+ limp,(x) (1.2)

are always hold, except the cases, when in the right or left parts (1.1) and (1.2), there
IS the uncertainty +00+(— 00) :
Let’s prove, for example, the inequalities (1.1). Let
lim p,(x)=a,, imgp,(x)< A, ] =12
and for simplicity we will assume that A, and a; are the finite numbers.

Then

(Ve >0)(3x, (Vx> X, i, (X)< A, + &,
10



(Ve > 0)3x, Nvx>x, fo,(x)+ 0,(x)< A + A, +2¢}
and hence,
lim (¢, (%) + @, (x)) < A + A, +2¢,

where, due to the arbitrariness of & , we get the first inequality (1.1).

From the definition A, follows the existence of the sequence (Xn), which tends
to the + 0, that @, (Xn)> A - ¢. Inequality also takes place for this sequence

lim ¢,(x,)> lim ¢,(x)=4a,,

that is, ¢1(Xn)> a, — ¢ for enough large n. Thus, there is a sequence (xn) that tends to
+ 0, that ¢1(x:)+ ®, (X:)> A, +a, —2¢. From this, we receive the inequality

Iim (¢, (x)+ @,(x)) = lim (¢, (x;) + @, (x;))= A, +a,—2¢,

X—>+o0 n—+o0o

and due the arbitrariness of &, we have the second inequality (1.1).

Note that in the cases, where uncertainty +00+(— OO) is in the right or left parts
(1.1) and (1.2), these inequalities may not hold. To prove that it is enough to take
0.x)=0(x) and @,(x)=b-p(x), where @(X)—>+0, when x—>+ow. Then
lim ¢, (x)=+<0, lim ¢,(x)=—c0 and_ lim (¢,(x) + ¢,(x))=b, where b is the arbitrary
number.

From Lemma 1.1 it follows: if there exists lim ¢,(x), then

lim (¢, (x) + @, (x)) = lim ¢,(x)+ lim ¢, (x)
and

lim (¢, (x) + ¢, (x)) = lim ¢,(x), lim g, (x)

except the cases of uncertainty + + (— 00).

The correctness of the next four lemmes follows either from the definition of the
upper and lower limits or from the considerations similar to those used in the proof of
Lemma 1.1.

Lemma 1.2. The next equalities are true
11



I (- ()= lim ¢(x).

X—>+00

i (- (x)~ - fimp(x),

X—>~+00

Lema 1.3. Letp,(x)=0(x>x,), j =1 2. The inequalities

lim ,(x) lim ¢, (x) < lim (¢, (x)e, (x)) < lim ¢, (x)lim >, (x)

X—>+00 X—>+0 X—>+00

and
lim ¢, (x)lim @, (x) < lim (¢, (x), (x)) < lim ¢,(x) lim ¢, (x)
always hold except the cases, when the uncertainty 0 x oo is in their right or left parts.
In the case of existence of one of the limits in the Lemma 1.3 the inequality is

converted into equality.

Lemma 1.4. If T isthe continuous non-decreasing function, then

i ()= f ().

X—>+00 —>+00

and if f is continuous non-increasing function, then

im £ (p(x))= 1 {im o).

Let @:R— R be an arbitrary function. Let's define
@, (x)=inf {p(t):t>x}, D"(x)=sup{p(t):t>x}.
It is easy to see that (D*(X) IS non-decreasing function and CD*(X) IS non-
increasing function. Therefore, there exists the limits lim ®. (x)=band lim & (x)=B,

finite or infinite. Let's define lim o(x)=a and limp(x)= A.

X—>+00

Lemma 1.5. The next equalities are true a=b and A=B.

Let's prove, for example, that A=B. It follows from the definition B that

¢(X)S (D*(X), I.e. A<B. Let's assume the opposite, that A<B. Then, if A=—co, then
(0(X)—>—°0, when X — +oo. Therefore, q)*(x)—>—oo,when X —> 40, i.e, B=—o0. But

it is impossible. If —oo< A<+o0, then for chosen C, A<C < B there is X, that is

12



gp(X)SC for all X>X,. Hence, ®'(x,)<C and " is the non-increasing function.

Then B < C, which is impossible.

Convex functions

Let the function f be defined on the interval(a,b) and a<X <X,<b. we
connect the points (Xl, f (X1 )) and (Xz, f (X2 )) of the plane by a segment. If for any points
X,y X,, such the segment is located above the curve Y= f(X), then the function f is
called the convex one on the interval (a,b), and if it located under this curve, it is called

the concave function on (a,b). We will study the convex functions, because a concave
functions have the similar properties.
The equation of the segment connecting the points (Xl, f(Xl)) and (Xz, f(X2 ))

has the form

Therefore the convexity of the function f on the interval (a,b) means that the next

inequality takes place

X, — X X — X,
< X 1)+ X5 1) i

for each three numbers a <X, <X<X, <b,
Finally, letin (1.3) X=(1—t)x, +tx,,0<t <1 Then X &(X,,X,) and the convexity
of the function f on (a,b) means that the next inequality is hold
f(L-t)x +tx,)<(@-t)f(x)+tf(x,)

foralland a<X <X, <b and 0<t <1.

13



Theorem 1.1. The convex on (a,b) function f is continuous on (a,b).

Proof. If in (1.3) we’ll tend X X,, then we get the inequality lim f(x)s f(xl),

xdx

i. e. for each X, €(a,b) is hold

lim £ (x) < £ (x, ). (1.4)

x¥Xq

If in (1.3) we’ll tend X, ¥ X, we get the inequality h_rp f(x)> f(x), i. e. for each

X, €(a,b) is hold
lim f(x)< f(x,). (1.5)

xdxq

From inequalities (1.4) and (1.5) follow that lim f(x)= f(x,) for all X, E(a,b),

therefore T is continuous on the right at each point from (a,b). The proof of continuity

on the left is similar. You only need to approach x T x, in (1.3) and then x, T x.
The theorem is proved.

The convex functions may be undifferentiated, such as the function y = x| at the
point x=0. However, such a theorem is correct.

Theorem 1.2. The convex on the interval (a,b) function f has a non-decreasing

continuous derivative on (a,b), except the countable set of points, where one-sided

derivatives exist. At each such a point the left-sided derivative does not exceed the
right-sided derivative.

Proof. Let's first show that there exists a right-sided derivative

f(x)-f f(x)-f
)= Flx) at every point X, €(a,b). Let's prove that ()= f(x,) is

xdxg X — XO X— X0

the non-decreasing function on (Xo,b). It means that for all points X, <X <X, <D the

next inequality is hold

f(X)— f(xo)s f(xz)_ f(xo).

X2 _Xo



It is easy to verify that inequality (1.6) is equivalent to inequality (1.3) with X, =X,

and therefore, the existence of a right-sided derivative at every point X, e(a,b) IS
proved.

The existence of T/(X,) at every point X, € (@,b) also follows from the inequality

)= flx)  f(x)-f(x)

< , A<X <X<X,, 1.7
X —x. X—x. ) 0 (1.7)

which is also equivalent to inequality (1.3).

The inequality (1.3) is also equivalent to the inequality

f(d)-fx) flx)-f(x)

< , X <X<X,. 1.8
x RIS (L8)

By tending x, T x and x,{ X, we get the inequality f_'(X)S f+'(X) at every point
xe(a,b).
Let's take four points &< X, < X< X, <X, <b. Then from (1.8) we have

f(X)_ f(X1)< f(xo)_ f(X)< f(xz)_ f(xo)-

X — X, X, — X X, — X

(1.9)

If we tend in (1.9) x4 x_ and x, x,, then we’ll get the inequality f/(x )< f/(x,),
I. e. the right-sided derivative is a non-decreasing function and therefore it is
continuous function on (a,b) except the countable set of points. If we tend in (1.9)
x, T x and x, T x,, then similarly we’1l get that the left-sided derivative is continuous
on (a,b), except a countable set of points. Finally, if we tend in (1.9) x 4 x, and x, T x,
, we will have the inequality /(x,)< f/(x,), X, <X,.

Let (a,ﬂ)c(a,b) be any interval, where f' and f' are continuous. Then for
arbitrary points X, <X, from (a,f), the inequality f/(x )< f'(x,)<f/(x,) takes
place, i.e.

£/(x,)=lim £/(x)< £(x,)< £/(x,),

15



it means that the function f has a derivative at each point from (a, ﬂ)
The theorem is proved.

Theorem 1.3. If the function f is convex on the (a,b) and there exists the
derivative T'(x;) atsome point X, € (@,b), then for all X e(a,b)
f(x)= (%)= f(x )x=x,). (1.10)
Proof. If in (1.6) we tend xyXx, well get the inequality
f(xz)— f(xo)z f'(xo)(xz—xo), X, > X,, i. e. the inequality (1.10) for X > X,. For X <X,
the inequality (1.10) similarly follows from (1.7), when x T X, -

Theorem 1.4. In order that the function f to be convex on (a,b), it IS necessary

and sufficient that
f(x)=f(x,)+ [o(tht (1.11)

where X, is an arbitrary fixed point from (a,b) and ¢ is the non-decreasing function
on (a,b).
Proof. If the function f is the convex on (a,b), then as has been shown when

proving the theorem 1.2, it has a non-decreasing derivative except a countable set of

points, at which this derivative has gaps of the first kind. Then there exists the integral

X X
X X

J 0= 1= 100 1(x,),
i. e we have (1.11) from o(t)= f/(t).
On the contrary, since ¢ is the non-decreasing function, then from (1.11) for

X, <X<X, we have

X

f(x)-flx) 1 folt)it<o(x)< 1 T(p(t)jt:f(xz)—f(x)

X—X, X=X, % X, — X% X, — X

that is (1.8) is hold and therefore (1.3).

The theorem 1.4 is proved.
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Corollary 1.1. If the function f is convex on (a,+00), then there exists

lim @ =k & (~o0,400],

X—>+00 X

if a<0 and f(0)=0, then %X)Tk(xTwo).

Proof. Since from (1.11) the function ¢ is non-decreasing, therefore it has a

limit K € (— 00,+00], then according to the H’Lopital s rule

lim ) _ lim p(x)=k.

X—>+00 X X—>+00

If a<0 and f(0)=0, then from (1.6) when x=0 we have f(X)/x<f(x,)/x,,
0<X<X, <40,

The corollary is proved.

If the function f(x)= F(ex) is convex on (N, In f3), then the function F on
(a,ﬁ), o >0 is called logarithmically convex on (a,ﬂ). Thus, a function F is
logarithmically convex on (a,ﬂ) if and only if for any three numbers
X, X,, %, (In & < X, < X< X, <In B) the inequality takes place

117720773
A X=X Sy X=X .
F@)sxiq(F@)+;;3zF@ )

2 1

If we make a replacement x=Inr it means that for any three numbers
r,1, 1 (<1 <r<r < })the inequality is hold
Inr,—Inr Inr—Inr
Fr)<—2——F(r)+———-F(r).
Inr,—Inr, Inr,—Inr,
From the definition of a logarithmically convex function, it follows that the function is
continuous, has a continuous derivative, except a countable number of points in which
there are one-sided derivatives, and at each point the left-sided derivative does not

exceed the right-sided derivative.
By the Theorem 1.4, the function F is logarithmically convex on (a,ﬂ) if and

only if

17



)= Pl ol

where X, is an arbitrary fixed point from (In a,n ﬂ) ad ¢@is non-decreasing function

on (Ina,In B). If we make a replacement x =Inr, w’ll get

F(0)=F()+ Joltpt=F(r,)+ [ 2t

Inr o t

Hence, denoting l//(t)zgo(lnt), we get that in order that the function F is

logarithmically convex on (a, ﬂ) it iIs necessary and sufficient, that

F(r)= F(r0)+rj4t)dt,

where Iy is an arbitrary fixed point from (a,ﬂ) and y is non-decreasing function on
(@)

Slowly varying functions

The positive continuous function ¢ on [a,-I-OO) is called a slowly varying one,

M—)l (x — +o0) (1.12)

()

forall Ce (0,+00). If the function is increasing, then it is called the slow-increasing.

Theorem 1.5 (Karamat's). If the function ¢ is slowly varying, then the tending
to the limit in (1.12) will be uniform for each ¢ from the fixed interval
[c.,c,] 0<c <c, <+,

Proof. Let's f(x)=1In go(ex). Then (1.12) will write in the form

f(x+4)-f(x)=>0, x—+w (1.13)

for all A R and, therefore, it is necessary to prove that the approaching to the limit

in (1.13) is uniform for A €[a,b], —oo<a<b <+, We can assume that [a,b]z [0,1],

otherwise, we can consider the function f = f ((b—a)x) and reduce[a,b] to [01]. Then
18



f(x+2)—f(x)=f(y+u)-fly)+ f(x+a)-f(x),

where VIS,AF%, s0 (X —=+0) < (y = +0) and (1 e[a,b]) = (z€[01]) .

Suppose the opposite that the approaching to the limit in (1.13) is not uniform
with A€[a,b] . Then
(3&>0)3(x,) T +oo)3u, }e ANV =1) {f(x,+ ) F(x )=} (114)
Let's denote
U, = {uel0,2]: (vm>n){f(x, + 1) f(x,)<&/2}} (1.15)
and
V. ={1e[0.2]: (vm=n){f(x, +u, +2)- F(x, +1,)<sl2f}.  (116)
The sets U, and V,, from (1.13) have the properties
U.,cU T[02] v <V T[02] (h—w).
That's why mesU , >3/2 and mesV, >3/2 for enough large N . Let V, =V, + 4, (to
each element from V, we add 4). Then mesV, >3/2. Obviously that
U c[0.2]c[0,3] and V. <[0,3]. Therefore, U, NV, =&, that is (34, €U,) and
{/10 eV, } and, hence, 4, — , €V, . Therefore, from (1.15) it follows that
(%, +4,)- f(x,)<el2, (1.17)
and from (1.16) we have

‘f(XN T My +ﬂ’0_ﬂN)_ f(XN +ILlNX<8/2’

(% +4)— F(x, +, ) <&/2. (1.18)
From (1.17) and (1.18) we obtain
(X + 28 )— F(x) =T O+ 200)— T (X +4)+ T (X +4)— F(x)<e,
which is not possible because of (1.14).

Theorem 1.5 is proved.
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Using theorem 1.5, we’ll prove the theorem of the representation of a slowly

varying function.
Theorem 1.6 (Karamat's). In order that the function ¢ defined on [a,+00) to

be slowly varying, it is necessary and sufficient that
ot0)=0,0exp| [ 2} 019

t
where ¢, and & are continuous functions @,(t)—>a,>0 on [a,+%0) and &(t)—0
when t — 0.

Proof. Let the function ¢ be slowly varying one on [1,+00). Let’s denote
f(x): In (p(ex). By the Theorem 1.5 the approaching to the limit in (1.13) is uniform
with 4 € [0,1]. Therefore

{f(x+2)-f(x)}Jdl >0 (x— +w),

O =y

el(x):xrf(t)dt—f(x)—m (X > +o0),
f(x)= j(t)dt £,(x) j (tyt— jft)dt &(

f(t+1)— f(t)dt.

- Xff (t)dt_i f(t)dt+i f(t)dt—gl(x):i ft)dt—e (x)+

Let's denote

o'—.x

c(x)=[ F(t)dt=5,(x) Alt)= f(t+1)-f(t),

O'—.»—\

so c(x)—>c, = i f(t)dt, A(X)—>0(x—>+o), and Ing(e*)=f(x)= c(x)+J:A(t)dt .

Therefore,

0 0 t

o(x)=e"™ exp{mf ()dt} e(inx) exp{mij(lnt)dt}.

Denoting ¢,(x)=e""" and S(t)=A(Int), we get (1.19).
20



On the contrary, for all C€ (0,+oo) from (1.19) we have

Z<§;)>:<2<g;)>exp{°f5(t)d . t}:(1+o<1>>exp{o<1>m cl=(t+o(t) (x—>+=0)

.e. the function ¢ is slowly variable.

X

Corollary 1.2. If the function ¢ is a slow varying and 5 > o is a fixed number,
then x’”go(x)—> 0 and X"¢(x)—> 400, when X — 4.
In fact, from (1.19) for each € € (0,77), when X2 Xo(g), we get
o, (X)exp{-eIn x}<p(x)< g, (x)expieIn x},
from here, the necessary relations follow easily.

Let's give another important criterion for the slow varying.

Theorem 1.7. In order that continuous function ¢ to be slowly varying, it is

necessary and sufficient, that there exists the continuously differentiated function v,
such that l//(X)~ (p(X), X—+0 and

xy'(x)
w(x)
Proof. If the function ¢ is a slow varying, then it has the representation (1.19).

=2, o0, !,

lim M= lim M—l

X—>+0 l//(X) X—>+00 ao

—0 X—> +oo. (1.20)

Let’s denote

SO,

and

XW(S) dlrllnwx(X) XEE(t)dlnt=5(X)%0 (X = +o0).

On the contrary, if (1.2) takes place, then for all C€ (0,+00)

Iy (cx)—Iny(x) =

CX 4:1//'()() =0 NCc, X—+4w
I w(x) dg‘ tine
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im M: im W(CX): :
) )

The theorem is proved.
When proving Theorem 1.7, we have shown that for continuously differentiated
functions from the condition (1.20) follows a slow change of function y . In the

mathematical literature, condition (11) is often taken as the definition of a slow change.
Using (1.20), it is easy to show that the function y/(x): In, X,k >1 is a slowly varying
function (here In, x=x,In_x=Inx,In, x=In(In,_, X)). Let’s notice, that from the slow
change of the function ¢ does not follow the condition (1.20) in general, as evidenced

by the example of a continuously differentiable function qo(X): Inx+sinx.

Function In" x

Let DR be the domain of definition of the function f. Let's denote
D' ={xeD: f(x)>0}, D ={xeD: f(x)<0} and
* —f D-
f+(x):{f(X),X€D, f(x):{ (x),xeD",

0,xeR\D", 0,xeR\D".

In particular, for ae R

. laj+a

a , a="_"%, a=a'-a, [a]=a+a",
2 2
and
. Inx, x>1,
In* x=
0, x<1.

Theorem 1.8. If 8, >0(k =12,...,n) , then
In“JJa, <> In"a, (1.21)
k=1 k=1

andif a >0(k=12,...,n), then

22



In*>a <>In"a +Inn
k=1 k=1
(1.22)

Proof. Let's start from (1.21). If []a, =0, then In" ] Ja, =0 and the inequality
k=1 k=1

(1.21) is obvious. If []a, #0, then &, >0(k=12,...,n)
k=1

that is, again leads to (1.21).
Using (1.21), we have

In*zn:ak <In*(nmax{a, :1<k <nj)<In"n+In"max{a :1<k <nj< anln*ak +Inn.
k=1 k=1

Semi-continuous functions

The function f:E— [— 00;+00) defined on the set E — R is called the upper
semi-continuous at X, € E , ifforall A> f(X, ) there exists the number & =5(x,,A)>0

, such that the inequality A> f(X) is hold for all x e (E ﬂﬂx— Xo| < 5}) The function

f is called the upper semi-continuous one on the set E if ¢ is the upper semi-

continuous at each point of the setE. The function ¢ is called the lower semi-
continuous one (in X;, on E) if the function »=—f is the lower semi-continuous

(respectively in X;, on E). We will study the the upper semi-continuous functions.

1

The simplest examples of the upper semi-continuous functions are: f (X) = _M

and f(x)=In|x|,xeR. The properties of the upper semi-continuous function follows

directly from its definition:
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. In order that the function f:E — [— oo;+00) to be the upper semi-continuous

on E, it is necessary and sufficient that the set {X ekE: f(X)< A} is open on E forall

XeR.

Il. The sum of two upper semi-continuous functions is the upper semi-
continuous function.

I11. The product of the upper semi-continuous function and the positive constant

is the upper semi-continuous function.

IV. If the function ¢ is the upper semi-continuous at the point X,, then

lim f(x)< f(x,).

V. If the function ¢ is the upper and the lower semi-continuous at the point X;,
then £ is continuous at this point.

The semi-continuous functions have some properties close to the properties of
the continuous functions. For example, the analogue of Weierstrass's classical theorem
IS correct.

Theorem 1.9. If the function f is the upper semi-continuous on the compact K
, then it reaches its maximum on K., i. e. there exists X, € K , such that f(x)< f(x,)
forall xeK.

Proof. Let's denote M =sup{f (x): xe K}, If f(X)E—OO , then M =—o0 and we
can take any point in the role X,.

If f(X)#—00, then there exists a sequence (%) on K, such that f(x)—=>M .
Since K is the compact, we can assume that X, = & €K and we need to show that
f(£)=M . To do this, suppose from the opposite, that f(£)=4<M and we’Il choose
A< <M . Then, by property I, the set G(u)= {X eK: f(x)< ,Ll} Is open on K and
contains the point . It follows that in some interval (5—5,§+5)C G(,u) there are
infinitely much  members of the sequence (Xk), and we have

M>u>f(x)—>Mk—o.
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Theorem 1.10. If (fn) Is the non-increasing sequence of the upper semi-

continuous functions on the setE , then the function f(x)= lim f (x) is the upper semi-
continuous function on E .

Proof. It is clear that f(x)<f(x)<+o on E. Lets denote
E(A)={xeE: f(x)< A}. We need to prove that E(A) is the open set.

Let's take an arbitrary point &€ E(A). Since v, (£)4 F(£)< A, then w,(£)< A
for all N >n,. Therefore, the sets E,(A)={xeE: f (x)< A} are the neighbourhoods
of the point &. But f(x)< f (x), that is E,(A)c E(A). Hence, E(A) contains the

neighbourhood of the point = and is the open set.

Theorem 1.11. If  is the upper semi-continuous function on the set E, then
there exists a decreasing sequence (fn) of continuous functions on E, such that
f(x)=|nimo f(x).

Proof. Let's consider only the case, when E is the compact.

We can assume that f(X)> —0 for all x € E, because otherwise we can consider
the function EXp{f(X)}, which is the semi-continuous on the set E and positive. If
o,(x)¥ exp{f(x),n =00 and all ¢, are continuous functions, then all ¢, are the
positive functions and functions f,(X)=In(L/n+g¢,(x)) are continuous on E and
f (x)4 f(x),n—o0.

So, let it E be a compact and f(X)>—00 for all x € E . Let's denote

f,(x)=max{f (y)-nlx—y|: y e E},
and let ¥, =Y, (X) such that
f,(0)= £ (y,(x)-nx—y,(x).
Let's show that each f is a continuous function on E. In fact, for everyone

*

X e E

f (x)=f(y,(x))- nx—y, (x} >
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> £y, (¢ )0l = y, (¢ -l x| = £, ()-nlx—x]
and similarly,

f.(x)= f,(x)-nx-x|,

f(x)-f (x)=nx—x,

from where the continuity of the function f, easily follows.

It is clear that the sequence (f, ) is decreasing. Suppose that f_ (x){ g(x),n — o
~since T, (x)> f(x)>—0, then g(x)> f(X)>—0. If we take the limit in (1.23), we’ll
get Y, (X)—) X,N— 00 and therefore by to the property IV

im 1,00 =1m (£ (y, ()~ nlx— y, ()= im £y, ()= (),

n—oo

I.e. g(x): f(X). Therefore, g(x): f(X), the Theorem 1.11 is proved.

Order, type and category of growth

Let the function A= A(r) be defined on [0,+00), positive and non-decreasing on

[r+o0), 1 >0 .

The values

—In*_A(r) i:"mlrﬁ—A(r)
> nr e nr

are called the order p = p|A] and lower order 4 = A[A] of the function A correspondly.

In the case, when o< p < +oo, to characterize the growth of the function A we

use the values of the type T =T[A] and the lower type 7 = 7[A] by the formulas

Toim AN i AL,

It o e Inr?

If T =0, then A has the minimum (zero) type, if 0<T < +oo, then A has the normal

(average) type, if T =-+o0, then — the maximum (infinite) type.
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Suppose that I, =1, i. e. the function A= A(r) IS positive and non-decreasing on
[1,+00). Suppose also that ,0=,0[A]< +%0 and x> p. Then A(r)Sﬂ for every

7 €(p. 1), when r21,(7), so

| AN g < oo (1.23)

On the other hand, if (1.23) takes place, then for each £>0 when 2 ()

Alt T 1 1
€>I #(ﬂ)dt >A(r It/‘“dtzﬁ’

Ar)< e r>re).
(1.24)
From (1.23) and (1.24) it follows that

p|A] = inf {y >0: j ?Ll)dr < +oo}

Moreover, if the integral in (1.23) is divergent for all .o, then we suppose that

p[A]z +00 .+

From (1.24) it also follows that ,[a]< . and if 5[a]= ., then A has the minimum
type, that is T[a]=

Let's suppose p = ,O[A]< +00 again. Let's consider that the function A belongs

to the class of convergence or divergence depending on whether the integral is

convergent or divergent

TA()

r p+l

dr < +o0 (1.25)

As mentioned, if the function A belongs to the class of convergence, it has a minimum
type.

We consider that the functions A and A, have the same category of growth if
they have the same order, and in the case of the finite order, they have the same type

and simultaneously belong to the class of convergence or divergence.
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The function A, has a higher growth category than the function A if one of the

conditions is hold:

2 plA]>p[A]

b) p[A]=p[A], but T[A]=+0 and T[A]<+oo;

c) p[A]=p[A], but 0<T[A]<+0 and T[A]=0;

d) p[A]=p[A] T[A]=T[A]=0 but A belongs to the class of divergence,
and A, belongs to the class of convergence.

Theorem 1.12. Let A(r)— +o0(r, <1 —+o0), and

A(r)=c, +j@dt, C, = const |

Then the functions A and A, have the same category of growth.

Proof. We can assume that ¢, =0 and I, =1. Since

EI’

)2 [z a2 - afe) w29

r r

then p[Al]Sp[AQ] and if p[Ai]=p[Az]=p, then T[A]<T[Ak”. On the other hand, if
p[A]<bré, r>r, | then

Az(r)sjb%dt =K+ Er K = const_

h

that is p[A < p[A] and if p[A]=plA]=p, then T[A]<T[A]/p.

It follows that the functions A and A, have the same order p and if 0< p <+,
then they have the same type. In the case when p = 0, the function A has the maximum
type and, because of (1.26), the function A, has the same type.

Finally, if 0< p <+,




i. e. the functions A and A belong to the class of convergence or divergence

simultaneously.

Theorem 1.12 is proved.

Proximate order

The function p(r) on [0;+c0) is called the proximate order if
1) p(r)20,03r<+oo;
2) p(r)— pe[0;+x), r—+x;
3) p(r) is continuously differentiated function on [0;+);
4) rp'(r)inr >0, r —+0
If the difference between the proximate orders is 0(1/Inr), when r—s +oo,

then those two proximate orders are called equivalent. Note that for equivalent

proximate orders p;(r) and p, (r)
rA0)=p.(1) _ exp{(,ol(r)—,o2 (r))In r} =@ 5 1(r > +w).

Note some of the simplest properties of the proximate order.

Lemma 1.6. If p(r) is the proximate order, then the function I(r)= PP s

the slowly varying.
Indeed

rl’(r) dinl(r)
1(r) ~ dinr

=rp'(r)inr+p(r)—p—>0 (r—+x),

that is the function 1 is the slowly varying.

Lemma 1.7. If p(r) is the proximate order and , > o0, then the function

V(r)= ) s increasing on [fy;+).
Indeed
V'(r)=(p(r)+rp'(r)In r)r”(r)_1 = (1+o(1))prp(r)_l, (r— +m),
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thatis, V'(r)> 0 for all enough large I.
Lemma 1.8. If p(r) is the proximate order, and @ and b are the fixed numbers,

0<a<b<+owo, then for each >0, r>r(s) and each c<|a;b]
(1-&)c r’") <(cr) ™) <(1+&)crr?l),

) | p(cr)
In fact, let I(r)= AP Then (cr) = (cr) and since by the Lemma 1.6

1(r)  ceprlr)
I (cr)

the function | is slowly varying, then by the Karamaty's Theorem ——= —1,1r — +o0

I(r)

uniformly in relation to c |a,b].

As can be seen from the Lemma 2.3, the function rp(r) behaves like a function

r”. This is also evidenced by the Lemma 2.4, the correctness of which is easily checked
using the H’Lopital's rule.

Lema 1.9. If p(r) is the proximate order and p(r)— p >0, then, when

r— +o0

jtp(t)_th = —(l+0(1)) pP(r)-a+l qg<p+1,

and

et ag (L+0(1)) p(r)aut
q-p-1

Let's prove, for example, the first of these correlations. We have

, 0>p+1,

r

7%t

P(r)-d
lim +————= lim =
r—-+ r,O(r)—CH‘l r—-+oo rp(r)_q (p(r)+l_q+rp'(r)|n r)

lim 1 = L _
r—+o0 p(r)+1-q+rp'(r)inr  p+1-q

30



Let A be a positive non-decreasing function on [r0;+oo). The proximate order
p(r) is called the proximate order of the function A, if

- A(r)_ * .
rL'TooW_T e (0;+). (1.27)

The number 7 is called the value of the type ot the function A relatively to the
proximate order p(r). Of course, if p(r) is the proximate order of the function A and
p(r)— p(r—+wo), then p=p[A] is the order of the function A. Note that if in
(1.27) p(r) replace by the equivalent proximate order, then the value of the type r

will not change.

The proximate order A(r) is called the lower proximate order of the function A

,as
lim A(r) =T« € (0;+oo).
r—+o (r)
Itis clear that A(r)— A =A[A](r —+o0), where A[A] is the lower order of the
function A.

The proof of the Valiron's Theorem 1.13 belongs to S. Shah.
Theorem 1.13. For each positive non-decreasing function A of the finite order,

there exists the proximate order [0;+).
Proof. It is enough to construct a function p(r) that, instead of condition 3) in
the definiton of the proximate order, satisfies the weaker condition, that p(r) is

continuous on [0;+0) and continuously differentiated on [0;+c) with exception of
isolated points, in which there exist the one-sided derivatives. Because in the enough
small neighborhoods of angular points p(r) can be replaced by o(1/Inr), r —+w0 so
that the new function is continuously differentiated and the conditions 1), 2), 4) and
(1.27) are not violated. Note also, if A(r)=0(1), r — +o0, then to prove the theorem,

it is enough to choose p(r)=0.

31



So, let A(r)[l +o,r —+w,and p be the order of the function A. Let's denote

_In" A(r)

d(r)= ,

Inr

so lim d(r)=p, there are two possible cases:
r—+o0

1) there exists a sequence (1 ) T +o0, k — oo such that d (1 )> p;
2) the inequality I'2 Ty is hold forall d (r)<p.

Let's consider the first case. Let ¢(r)=max{d(x):x=r}. Then
¢(r)¥ p,r =+ and the set M =max{r:d(r)=¢(r)} is unbounded. Let f; >€xp31
and L € M | Let's define

p(r)=p(r), 0<r<p.
Denote t; =min{te N :t>r;+1 ¢(t)<¢(r)} and
p(r)=e(rn), r<r<g.
Let U be the abscissa of the first point of curves's intersection y=¢(r) and
y=p(r)—Ingr+Inst; at r24. Denote
p(r)=p(r)-Ingr+ingty, t<r<u.
It is obviously that p(r)=¢(r) on [t,u] and p(u) =@ (u).
Finally, let r, =min{M N{r>u}}. If > U, then
p(N=p(r)=e(n), W<r<n.
Next, with I, we make the same consideration as with Iy, and since
o —fg 22Uy =g 2t -1 21,
then, repeating this process, we define p(r) on [0;+x).
Thus, the constructed function p(r) IS continuous and has a continuous

derivative everywhere, with the exception of points t, and U,. in which there exists
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1

one-sided derivatives. Since either p'(r)=0 or p'(r)=——7"—
F(r) p(r) rinrin,r

., then the

condition 4) is hold. By construction p(r)>e(r)>d(r) at rg,
p(h)ze(r)2d(r,) for all n and p(r)>p,r—>+0o. Therefore,
InA(r)<d(r)inr<p(r)inr when r2n and InA(r,)<d(r,)Inr, <p(r,)Inr, for

everyone n e N. It follows that

i Ar)

r—-+0 rp(r)

=1 (2.6)

and the theorem in this case is proved.

Let's consider the second case, 0<d(r)<p for all Iy>expsl. Let
w(r)=max{d(x):p<x<r}. Then w(r)0 p,r—+o, and the set
L= {r >1:d(r)= y/(r)} is unbounded. Let I} > Iy, and $; is the largest of the abscissa
of the points of curves’s intersection y =y (r) and Y =p +Ingr—Inz K. Obviously,
there exists the point S;, when I is large enough such 0<$; <I; and Lﬂ[ro,sl] 3%
. Let's denote t; = max {LN[rp,s;]} and

p(r)=y(t)=d(t), O<r<s.
Take now I, 2 1, so large that the largest of the abscissa S, of the points of curves’s
intersection y =y (r) and Y =p+Ingr—Ingr, satisfy the conditions f <S, <, and
LA[R,S;|#D. Let's denote t, =max{LN[n,s,]}, and letu is such a point from
[s1,1], at which w(r)=p+Inzr—Inyr2. Let's take

" {p+ln3r—ln3rl, s <r<uy,
p =
v(t)=d(tz), w<rs<s,

Continuing this process, by inequality I > T,_; +1 we can construct p(r) on [0;+x).
From the construction it can be seen that the function p(r) Is continuous and has

a continuous derivative everywhere, with the exception in points §, and U,, in which
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there exist one-sided derivatives p'(r)=0, or p'(r)= , that is, condition

rinrin, r
4) takes place. It is clear, that p(r)— p(r —>+x), p>p(r)=y(r)=d(r) when
r>rnand p(t,)=w(t,)=d(t,) forall ne N. Hence, it follows (2.6). Theorem 2.2
Is proved.

Theorem 1.14. For each positive non-decreasing function A on [0;+o) of the

finite lower order A there exists its proximate lower order.
Proof. Let

di(r)= Inr , r>2
Inr+In* A(r)

— 1 :
such that lim dl(r):—/l' Let's construct the proximate order p;(r) such that
r—+o0 +

pl(r)aﬁ when r— +o, P1(r)—>ﬁ when r—+00, 0<p(r)<1,

di(r)<p(r) for all r2f and dy(r,)<p.(r,) for some sequence (r,), that

approaching to the +oo. Let's denote A(r)= -1, Itis easy to check, that A(r)

pu(r)
has all the properties of the proximate order, A(r)— A (r—+0), INA(r)=A(r)Inr
,when 2Ty and InA(r, )> A(r,)Inr, forall n>1, thatis A(r) is the proximate lower

order of the function A.

Poy's peaks

Theorem 1.15. Let the functions @,®;,¢, be positive and continuous on
[rg;+0) , such that @, / ¢ is non-decreasing on [fy;+o0) and

— o(r)

— o(r)
=400, lim —==0. 1.29
L gy (1) (1.29)

r—>+0 0y (r)
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Then there exists a sequence (1, ) T +o0, n — o0, such that

(1)
(r), p<r<r,
qp(l’)S §"1(rn)¢1 (1.30)
2(h) @, (1), T, <r<+o.
¢2(rn) eV

Proof. Let's assume that Iy, l,..., I, are already known and denote

M, :max{(p(r) :roerrn}

o (r)

(in particular Mg =¢(1p)/ ¢ (15)). From the first condition (1.29) follows the
existence of a number

a:min{rzrn+1:m=Mn}.

Let b>a, such that

O [0 ]

AW @2 (r)

Let's choose I,,4 €[a;b],so that

r< b}, (1.31)

and show that for 1,1 (1.30) is hold.

In fact, if Ip <r<a, then

o(r) v _2@) _ o(ha)
AR )

and if a< T <I,_4, then by the construction
(D(I‘) < @(rn+1)
(Dl(r) (01(rn+1)

So, the first inequality (2.8) on [ Iy, I, ] with I,y instead of I, is hold.
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Further, since @,/ is non-decreasing on [fy;+x), then from (2.9) for

[ <7 <b we have

(D(I') _ (D(r)qpl(r) < (p(rn+1)(p1(rn+l) _ ¢(rn+1)
2 (1) (e (r) e(ha) o2 (haa)  @2(hs)’
and when r > b the second inequality is hold
o(r) _ o) _ o(hi)
AURAVRZI)

So, the second inequality (2.8) on [rn +1;+oo) with I,,q instead I, is hold. The Theorem

2.4 1s proved.
The sequence (rn) (the existence of which is already proved) is called the

sequence of Poy's peak.
Here are the simplest corollaries of the Theorem 1.15.

Corollary 1.3. Let ¢ be the positive continuous non-decreasing function on

[y;+0) of the order p e(0;+0) and &>0 is an arbitrary number. Then there exists

the sequence (T, ) T +00,n — oo of the Poy’s peaks, such that

rY ™’
gp(l’n)(r— , h<r<r,
n
(p(r)s e (1.32)
(p(rn)(rL , L <T<+o,
n

i ) _ ol

= o(n) o)
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Therefore, by the Theorem 1.15, there exists a sequence of the Poy's peaks, for which
(1.32) is hold.

Corollary 1.4. Let ¢ be the positive continuous non-decreasing function on

[h;+0) of the lower order A €(0;+), and & (0;4) is an arbitrary number. Then

there exists the sequence (T, )T 400, N — oo Of the Poy's peaks, such that

; At+e
go(rn) = , L<r<r,
n
p(r)= . (1.33)
(p(rn) r I, < <40
rn

2 2
In fact, let's denote gol(r):q) () and goz(r):(p g) Since ¢ has a lower

rl+5

order A, then

(1)
oi(r)
_ (I‘) _ m rﬂ+g
r—>+oo¢)1() r—>+oo¢(r)
i o) _

= lim ——=0.
r—>+oo¢)2(r) r—LToogo(r)

=r? T 40, >+,

= +00,

Therefore, by the Theorem 1.15, there exists a sequence (rn) of the Poy's peaks such

that
At+e
s )
(D (rn) r +&
q)(r)S A—&
¢(r2)r” () I, <T<+o0
( ) rﬂ—g

whence the inequalities (1.33) follow.

If we use the proximate order, then we can get much more flexible statements.
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Theorem 1.16. Let ¢ Dbe the positive continuous non-decreasing function on
[y;+0) of the order p e(0;+0). Then there exists the increasing sequences(r, ), (&)
and the non-negative sequences (a, ),(A,) and (&, ), such that
1) & —0,6,>0and a, >0, when n > o}

2) A, =+ and a,I, = +%©, when n > o©;

3)forall N=ny and refa,r,, A]

co(r)£(1+5n)¢(rn)[Ljp+gn - (1.34)

Proof. Let p(r) be the proximate order of the function ¢, which was
constructed in the process of proving the Theorem 1.14 (Valiron's theorem). Then

lim r7Ngp(r)=1

r—>+o0

and

1

< ——— (r>
p(r)‘_rlnrlnzr (r=n).

Let's denote

%(r) _ rp(r)—l/ln2 r, - (r) _ r,o(r)+1/|n2 r

Then

P2 _ y2/in,r :exp{m}Tﬂo (fp <1 —+0),

? In, r
im (I’) — lim ﬂrlllnzr: lim In—r =400,
[—>400 (Dl(r) r—+o0 rp(r) r—+w |n2 r
i (I’) _Tm (I’) T _ im _nr. -0,
—>400 (02 (r) r—+o0 rp(r) r—+o0 |n2 r

Therefore, by the Theorem 1.15, there exists the increasing sequence (rn) of the Poy's

peaks, that is tendinging to +oo, such that
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Denote

A =\In,r, a,=1/A,

such tnat A, = 40 , a8, =0 and a,I; =+, when n — o .

If &, Sr<1,, then from the first inequality (2.13) we get

exp{(p(r)—p(rn))ln r}.

Let's denote &, = p(r,)—p—1/In, 1, , such that &, —0(n— ). Then

jp"'p(rn )_p_lllnz I,

r

I )de

rn

r
Inr<

‘(p(r)—p(rn))lnr‘:

)‘dglnrs
"

r
Inr, —Inr
l J'dé‘n _ n <
. & In, r

rjglnflnzf Inrin, r &

_Inr, —In(ayn,) In A, B
- In, r CIn(Ing, ~InA,)

1 Ingr. _1+0(1) Ingr,
2In(lnrn—iln3 rnj 2 Inp,

Therefore, from (1.36) it follows that

—0 (n—)oo).

¢<r>s¢<rn>[i]p+g" e°<”=<1+o<1>>¢<rn>(ijp+g", 1>,
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and there exists the sequence (&, ) — 0 (n — o), that the inequality (1.34) is hold.
If I, <1< Ar, then from the second inequality (1.35) we have

rp(r)—p(rn)rllln2 r=1In,r _

jp(rn )+1In,r,

.
J» Inr Inr,
rncflncflnzgZ Inr In2r

. In( A, )-Inr,

Inr, In,r,

1+o
_L1_Insh Inr, +1In3 (2) Ing —0(n— ).
2Inr,In, 2

Hence, we again come to the existence of a sequence (&, ) — 0(n— o), such

that the inequality (1.34) takes place. The theorem is proved.

Theorem 1.17. Let ¢ be the positive continuous non-decreasing on [ry;+)
function of the lower order Ae(0;+w). Then there exists the sequences
(rh).(€1).(an).(Ay) and (&,) that satisfy the conditions 1) - 2) of the Theorem 1.16

and such that for all N >Ny and r e[a,f,; AL, |

¢(r)2(1—5n)<o(rn)[iT+gn.

The proving of this theorem is similar to the proving of the Theorem 1.16, but

we need to choose ¢and ¢, by the next way:

(Pl(r) _ ¢2 (I‘) r—ﬂ(r)—l/ln2 r’ , (r) _ ¢2 (r) r—/i(r)—llln2 r
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Borel-Nevanlinna lemma

Theorem 1.18. Let U be the continuous function on [r;+c) and
u(r)0 +oo,r >+, and ¢ be the positive continuous function on [uo;+00) (Uo=U(ro)),

such that ¢(r){ 0,r — +o0, and
[ o(u)u<+eo . (1.37)
uO

Then for all I 21y, except, perhaps, the set of the finite measure
u(r+(p(u(r)))<u(r)+1. (1.38)
Proof. Let's denote E, E = [ry;+0) as the closed set, on which (1.38) is not hold,
that is
u(r+(p(u(r)))2u(r)+1- (1.39)
Let E, =EN[r;+). Suppose that for each =1 the set E, #J, otherwise the
statement of the theorem is obvious.
Let
L=minE, =min{reE:r>r},
F=min{r:u(r)=u(n)+1}.
Then > and u(r +¢(u(r)))=u(n)+1=u(y). Weobtainthat r+g¢(u(r))=
1. e
—n<p(u(ry)).
Suppose that ,...,I,, {,...,I; are already chosen and denote
sy =MiNE, =min{reE:r>r},
e =min{r:u(r)=u(r,,,)+1}.
Then we have
U( et o(u ("n+1))) 2 U () +1=u(r,)

and
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rr;+1 n+1— ( (rn+l))

Hence, u(r,)—>+o0 and I, =+ when n — oo

From the definition of the sequence (r,) follows also that on the intervals
(n N ) (1.38) is hold. So, the set E, where (1.38) is not hold, is covered by the

intervals [r,;r;]. But

é(rﬁ —1)< é(p(u(rn))g égp(uo +n+1)<p(uy)+ Tgp(u)du <+

and, consequently, the Theorem 1.18 is proved.

Remark. The condition (1.37) cannot be weakened. Indeed, let Igo du +00
uO

u
. Denote r(u)= Igp(u)du, u>up.
uO

Then the reversed to r(u) function u(r) satisfies the conditions of the Theorem 1.18,
but the equality (1.39) is hold on [r0;+oo), because

r+o(u(r)) r+o(u(r))

s(reem)-ut)= [ wm= [ ot

dt=1.

) rw(Ju(r)) w1 r+¢(jU(r))
. e(u®) o)
Corollary 1.5. If Uis a positive function that satisfies the conditions of the

Theorem 2.7 and ¢ >0, then for all I 2 I, except, perhaps, the set of the finite measure,

1 l+e
u{r+|nu(r)]<u(r) : (1.40)

In fact, the functions u; (r)=./Inu(r)and ¢ (u)=1/u? satisfy the conditions of

the Theorem 2.7 and therefore, for all r > rg, except, perhaps, the set of the finite

measure u; (r+g(uy(r)))<up(r)+1, i€
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2
1
Inuj r+| ——=1 |</Inu(r)+1.
( Inu(r)} (r)
Therefore, when r>ry > 1)

Inu{r+ Inul(r)]£ Inu(r)+2y/Inu(r)+1<(1+¢)Inu(r).

The set E is called the set of the finite logarithmic measure, if

_[ dinr<+owo,
Eﬂ[l;+oo)

Corollary 1.6. If a positive function U satisfies the conditions of the Theorem
1.18 and ¢>0, then for all I'21, except, perhaps,s the set of the finite logarithmic

measure

1 l+e
u{r+|nu(r)j£u(r) : (1.41)

In fact, if we apply the Corollary 1 to the function u(er), we will get

l+¢
ul exp4r+ SU(er) (1.42)

_ 1
Inu (er)
forall r> rg , except, perhaps, the set of the finite measure. Let's denote X =e", that is

r = In x. With such the replacement, the set of the finite measure passes into the set of

the finite logarithmic measure and from (1.42) we receive

u[exp{ln X+ Inul(x)}] <u(x)"*

1 l+e 1 1
ul xex <Uu(X i _ -
S0, [ p{lnu(x)}} ( ) . Since EXp{Inu(x)}S1+ Inu(x)’ then from the

last correlation we get (1.41).
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Counting function and convergence indicator

Let (zn) be the complex sequence with a single cluster point in %, ordered so

that |z,|<|z,,1| (among the members of this sequence can be the same members and

also equal to zero). The function

is called the counting function of the sequence (zn). It is the number of the members

of the sequence (z,) that are contained in a closed circle {z:|z|<r}. The function

Mdtm(o)lnr

N(r)=

O —=

is called the average counting function or Nevanllina’s counting function of the

sequence (z,)

Let =2 ==2;3,=0 and Zy;1#0, and 1, €(0;|zy,q|) be an arbitrary

number. Then, when 21,

r

N(r):fW%dt+j‘%t)dt—mjr‘%+mlnr:j‘@dumlnro. (1.43)

r
0 r, r, I,

Therefore, by the Theorem 1.23, the functions n(r) and N (r) have the same growth
category. However, the function N (r) has advantages upon the function n(r). It is
continuous and continuously differentiated on [O;+oo), except the countable number

of points, which have the one-sided derivatives. At the points, where the derivative

exists, the inequality “2 < *@ js hold, that is 2 < %@ From (1.43) also follows that

N (r) Is a logarithmically convex function.
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Suppose that |zn| >0 forall n, and k(r) Is the largest of the integers, such that

n|=max{|z,|:|z,| <r}. Then, from (1.43) we get

k(r) 2

!

=1 g

n(®)

~+

+
xN
—_—— =

=
—
>
—

k(r)-1

):

j(ln‘zjﬂ‘— In‘zj‘)+k(r)(ln r— In‘zk(r)
j=1

=In|z,|—In|z|+2(In|z| = In|z,]) +...+

+(k(r) —1)(In ‘zk(r) ~In ‘zk(r)_l‘) +k (r)(ln r—In ‘zk(r)

):

+k(r)|nr_Z|n‘ | Zln‘ i (1.44)
Zjl | ]

z|<r

=—|n|21|—|n|22|—

‘Zk(r) 1‘ ‘Zk (r)

Since the counting function of the complex sequence (zn) is the counting
function of the non-negative sequence (An):(|zn|), and the rejection of the finite

number of the members of the sequence does not affect on the asymptotics of the

counting function, then we will study only the positive sequences.

So, let 0< A, [ +o0,n— 00, Suppose that

ii < 400 (1.45)
-1

for some t e (0;+00). Then the number

=inf{t>0: ) —<+4o0 1.46
et S o o
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is called the convergence indicator of the sequence (4, ). If >_ A" =+ foreach t >0
n=1

, then 7 =+o0. Note that in the case, when 0 < 7 < +oo, the series Zﬂﬂ_f can be both
n=1

convergent and divergent.
Theorem 1.19. Let 0<t<+oo. Then the condition (1.45) is equivalent to the

condition
n(r
J —drt(+1) <o, (147)

Proof. Let 0<fy <4 and r>rg. Then n(t)=0 on [0;Ky]. Taking the Stieltjes

integral and integrating it by parts, we get

Z ,1: Jdn n( j N dx_ )+tI £+1) (1.48)

It follows that

Approaching r — +oo, we get (1.47).

On the contrary, forall £>0andall r>r"(¢)

© 1 tn(x
Z_t:t.[ £+1) X,
nzlﬂﬂ 0 X
so that from (1.47) follows (1.45). Theorem 1.43 is proved.
From this theorem it follows that the convergence of the sequence can be

denoteded by the equality

7 =Inf {t>0:j%x<+oo} (1.49)
X
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: —1 : :
On the other hand, if p= lim nn(r) is the order of the function n(r), then, as had

r—>+o INT

shown in 1.12,
_ <n(x
o =inf {y>0:j%dx<+w} (1.50)
0

From the formulas (1.49) and (1.50) follow the next theorem.
Theorem 1.20. The convergence indicator of the sequence is equal to the order

of its counting function.

Density of sequence

Let 0< A, +o0,n— o0, and n(r) is the counting function of the sequence (4,)

. The values

D=WM, d= |i_mm

r»+o I r—+4o0 r
are called the upper and the lower densities of the sequence (/In). If D=d=A, then

the sequence is called the measurable one and A is called its density.

. n-1_n(r) n _
Let r>0 be an arbitrary number. If 4,y <r <4, then —<——=<— and if
7S SR
n(r) _n+q
r=74, =% :"':An+q < ﬂn+q+1’ then r = . Therefore,
+q

— N .n
D= Ilim —, d= lim —.
r_)‘mo/ln r—-+o0

The upper D" and lower d" average densities of the sequence (in) we denote by the

equalities
r
o =T N gt i N, N(r):j@dx_
—+00 r r—+o0 r X



Theorem 1.21. The inequalities D <D<eD" are hold.
Proof. If D <+, then n(x)<(D+¢)x for each £>0 and all x> Xy =X (&).
Then

N(r)sTLx)dx+JE(D+g)dx:(D+g)r+const,

0

where D < D+¢&, € is an arbitrary number. Therefore, we obtain the inequality

D" < D, which is obvious if D =+0.
Then

N(r)= Jr' @den(ﬁj

rle €
and
I:)*Zmn(r/e)_mn(r/e)_g
r>+0 I ro+oe(r/e) e

that is, we have the inequality D < eD". Theorem 1.21. proved.

Notice that the obtained estimates in Theorem 1.21 are exact. For example, if
An=n, then n(r)=r+0(1) and N(r)=r+O(Inr)when r— +oo. Therefore,
D=D =1. Let's prove that estimate D < eD’ is exact. For this it will be enough to
construct the sequence (4, ), suchthat at D=1and D =1/e.

Let (vi ) be the increasing sequence to +o of natural numbers, vo =0 and for

Vk-1 <N<V, we denote

n—-v,_
/?’ﬂ :Vk+¢-
Vk = Vk-1
If r>0 and A, <r<A4,,, then
wglg Vk <1,
ro Ay TR
Vk = Vk-1
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and since 2, = +1, then

1>D= lim —> lim X = lim —%—=1,
n—>+o A, k4o /le k—>+oo v +1

l.e. D=1.
Since

1

ﬂ' = Vk+1 + y
Vi1 — Vk

Vk +1

then, when vy <T<vy,; the inequality n(r) <y, takes place. But

Via r
N(r)= >, jnit)dt+jnit)dt, Vi ST<vi.

I<k-1 , v

Therefore, when vy ST <v,.1 , we obtain

N(r) Si{v1+ Z V| Inm}+v—klnL.

r Vk 1<k —1 Vi r Vi

: 1 1 : :
Since —Inx <= for all x>0, then from the last inequality we get

X e
N(r)si{vl+ z V| Inﬂ}+l.

Until now, the sequence (v, ) has been arbitrary. If we choose it so that v =[exp, k]

, then when vy ST <vyq we’ll get

N(r)<ﬂ+£|nﬁ+1:

r Vk Vk 1% 1 e

1 expy (k-1)+0(1), expk+0(1)
_E+O(1)+ exp, k +0(1) " Vi -
Lo« (o) 22D Loy ke

e exp, k e

It follows that D" <1/e and together with the inequality D <eD” we obtain
the equality D =1/e.
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Theorem 1.22. The inequalities d Sd*§d+dlng are hold, where the

expression on the right part should be considered as such that equals to the +00, when
D =400 and for arbitrary d and equals to 0, when D <+ and d =0.

Proof. If d >0, then n(x)=(d —&)x for each £<(0;d) and all x> Xy(¢).
Then
n x)

X

-_,q

N(r)=

+ | (d —&)dx=(d —&)r+const,

>

0

* o'—,ox

and we get the inequality d >d —¢ and, given the arbitrariness of &, we have the
inequality d” >d, which is obvious, when d = 0.
Suppose that D<-+o0. Then n(x)<(D+¢)x for each £>0 and all X=X (&).
Therefore, if o>1, then
ar):)j?n( +jn (x) dx+j )dx<const+(D+g jdx+jdx
0 X Xo X, r

= (ar)lna+(D+g)r+const,

that is
N(ar) @), P*e) Loy, v o e
ar ar (04
It follows that
d"<Piding (1.51)
(04

foreach o >1. If D =+<0, then the inequality (1.51) is obvious and in this case d” <+
If D<+oo and d =0, then d” <D/« and approaching & — +o we get d” =0.

: D
Finally, let 0<d<D<+w. Denote w(a)=—+dIna. Then
a

w(1)= D,y (+00)=+wo, the equation y'(a)=0 has the unique solution a =D/d

and l//(Ol*) =d+d In% < D . Hence, from the inequality (1.51) we have

d < min{B

+d|na:a>1}=d+d|n9,
a d

Theorem 1.22 is proved.
Let again 0< A, ] 400, N — o0, n(r) Is the counting function of the sequence

(4, ) and & €[0;1). The values
o(&)=Tim M=ED g g i DD =NED)

r>+0  F—r& o0 —TE
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are called the upper and lower densities of the sequence (4,) by the basis &e[0;1)

correspondingly. It is clear that D(0)=Dand d (0)=d .
Theorem 1.23. If

AW 2h>0, Aq—-4,2h>0 (nx1), (1.52)
then the functions D (&) and d (&) are continuous on [0;1) and
0<d(£)<d(0)<D(0)<D(&)<1/h. (1.53)

Proof. The inequalities d(&)>0 and d (0)< D(0) are obvious. Further, from
the condition (1.52) it follows that the number of the members of the sequence (4, ) ,

located on the interval [a;b), does not exceed the number (b—a)/h. Consequently,
foranyo< &< <1, we have

——n(ty)-n(t5) _1
tLlToo rn—ré *h’ (159

When 7 =1 it follows the inequality D (&) <1/h. Finally, from the identity

N _ o nM)-n(ts) . n(t)
t =(1=¢) t—t& te té
we obtain the inequalities

d(0)=(1-¢&)d(&)+&d(0), D(0)=(1-£)D(&)+£D(0)
and therefore, d (£)<d(0)<D(0)<D(&). Hence, all inequalities (1.53) are proved.

We only must to prove the continuity of the functions d (&) and D(&).

Let 0<& < <1. Using (1.54) and

(1_§)M:(l_n)”(t)—n(tﬂ)+ n(tn)—n(t\/;),

t—t& t—tn t
we have
(-n)d ()= (1-£)d (&)< (n)+ L=,
(1-7)D(n)<(1-£)D(£) <(L-m)D(m) + 1=,




1_(-m)D(n)-(1-¢)D(¢) _,
h n-¢

From these inequalities follows the continuity of the functions (1-¢&)d (&) and

(1-£)D(¢), and hence, the continuity of d (£) and D(&). Theorem 1.23 is proved.
Corollary 1.7. If D(n7)=d (&) for some 0< &7 <1, then the sequence (4, ) is
measurable. On the contrary, if the sequence (/In) IS measurable, then for all
0<& <l
In fact, if D(7)=d(&) for some 0<g <1, it follows from (1.53) that
D(0)=d(0), that is, the sequence is (4,) measurable. On the contrary, from the

identity
n(t)-n(t§) 1 nt) & n(t)

t—t&  1-& t 1-& t&

] .. n(t ]
and the existence of the limit lim ﬁ = A, it follows that
t—>+o00

n(t)—n(t

im ") _ A AS
toto  t—t& 1-¢ 1-¢&

Theorem 1. 24. There exists the limits

imd (£)=d (1), TmD()=d (1)

and the inequalities are hold
d(1)<d(&)<d(0)<D(0)<D(&)<D(1).
Proof. From the identity

1 nin(tgv‘l)—n(tév)

1-&" 3 e -t

it follows that

)
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and, likewise, (5” ) <&(&). We will consider only the proving of the existence of the
limit Iipd (£)=d (1) and proving the inequality d (1)<d ().
M

Let m=inf{d(&):0<&<1}. Then d(&)>m,0<£<1 and for each ¢e(0;1)
there exists »€(0;1), such that d(y)<m+e&. We’ll choose & so that
1-&(1-y)<&<1. Then &> 5 and there exists the natural number n>1, such that

E" <y <&Mt <&, Since the function (1-&)d (&) is non-increasing, then we get

(1-7)d(y)= (1—5”—1)d (&)= (1—§”‘1)d (&),

I.e.
d(¢)<d(7) 1_,171—0'(7){“ én_ln_f}
1-¢ 1-¢
But
oy < (1-8)<e(l-y)<s(1-&")
and
& - <& 1-¢ <2¢.
1- g—l 1- 5—1 “n-1
Therefore,

m<d(&)<d(y)(1+2¢)<(m+s)(1+2¢),
whence, due to the arbitrariness of &, the existence of the limit

Ii?wd (&)=m=d(1)<d (&) follows. Theorem 1.24 is proved.
M

The values d (1) and D(1) are called the minimal and the maximum densities of

the sequence (4, ) correspondingly.

Control questions
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Formulate the definition of the upper and lower limits.

Give the examples of the convex functions.

Formulate the definition of a slowly variying function and give the example.
Formulate the definition of a semi-continuous function and give the example.

Define the class of convergence or divergence of the function.

o o bk~ w Dnp e

Formulate the definition of the proximate order of the function and give the
example.
7. Define the counting function and the convergence indicator of the sequence.

8. Formulate the definition of the upper and the lower densities of the sequence.

Examples of problem solving

Example. Find the upper and the lower limits of the functions:

a) f(x)=sin21+garctgl, X—0:
X 7 X

b) g(x):(Z—xz)cosi, x —0.

X
Solving.
o . 51 1
a) Since Inf {Sln —}=0, when x=x, =——(n=12,...)
X Nz
and

Iimzarctgi =inf {garctg 1} =-1,

N 1 X, 7z X

x—0 n—o T

then lim f (x) = Iim(sin2 Nz + Earctg (—nﬁ)] =1 Similarly, sup{sin2 %} =1

when X=X, = : n=12,...) and Iimgarctgi:sup{garctgé}:l,
T

7z(1+ 2n)( n— 77 X X

n

then

lim f (x)= Iim(sin2@+garctg szlﬂz 2.

x—0 n—oo T

54



> | =

1
}=—1, when X=X, =-

(Zn—l)ﬁ(

b) Since Inf {cos

then

and Iim(2—x2):2,

x—0 n—o

x—0

Similarly, IXILng(x) =2.

Tasks for independent work

Find the upper and the lower limits of the function:
1) f(x)=x*sinx, x—>0;

cos(l/xz)

2) f(x)=e . X—>0;

3) f(x)zarctgi, x—0;

4) f(X)z(ll:zxxj , X—>o00;

5) f(x)=2", Xx—>oo;

6) f(x):g, X—0;
7) f( ):%, NG

9) f( ):1+el’x’ X—0
10) f(x):ecos(uxz), Xx—0;
) 4
11) f(x)=sin=, x—>—.
X T
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Ii_mg(x):lim[Z—(;z

2n—1) T

n=12,...) and limcos— = -1,

N—o0 X
n

Jcos(Zn ~)r=-2.



Capter II. Entire functions

Maximum modulus

The function f(z),z=x+iy is called analytic at the point Z;, if it has a
continuous derivative in some area of this point. If the function f (z) Is analytic on

all complex plane, then f (z) Is called an entire function. From Taylor's theorem we

can get
f(z)=> az", (2.1)
n=0
convergence radius is R=1/ lim {fja,| = . Therefore, the condition
n—o0
lim {a,| =0
Nn—o0

is hold.

The value M (r)= mgx{‘ f (Z)‘}O <T <00, the growth rate of which is one of the most
Z|sr

important characteristics of the entire function f (z), when r — oo, is called the

maximum modulus in the circle of the radius I.

Theorem 2.1 (Cauchy inequality). For any ne N takes place the inequality

a,r"

<M (r)
Proof. When 0<r<R and z:reiq’, we have
2 o\ i0) £ (reie)
|f(z)| :‘f(re )‘ :f(re )f(re ):
= Zanr”einwzakrke‘ik‘” =y anékr”“‘ei(mk)(p ,
n=0 k=0 n,k=0

and the last series is uniformly convergent on 0 < ¢ < 2, because it is majored by the

series
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o0 o0 2
> |an||ak|r”+k :[Z|an|r”J <o,
n=0

n,k=0

By integrating term by term , we will have

izf f(reiq))‘zd _ i a akrn+k izfei(n—k)(ﬂd
27 % v k=0 " 21 v

Since

then

and Cauchy's inequality is an obvious consequence of the latest inequality.
Theorem 2.2 (Liouville’s). If for entire function f (z) the condition
M(r)<Kr% r>r, K=const, (2.2)
is hold, then f (z) is a polynomial.
Indeed, from Cauchy’s inequality, when the condition (2.2) takes place, we get
la,|<Kr%™", r>r, g>0.

Let’s approach I to 00 . When n>q, we get &, =0. Hence,

f(z)=> az".

n<q
From Liouville's theorem follows, that if an entire function f (z) is not a
polynomial, then M (r) when 1 — oo is growing faster than any power I.
The function M (r) takes an important place in the theory of entire functions.

Its exact calculating even for the simplest entire functions can cause the difficulties.

However, usually, it is enough to be able to evaluate it from above and below.

Let's consider firstly the case of the polynomial of the power n (n 21)
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P(z)=ag+az+...+a,z", a,=#0.

In the circle |z| <r we have

‘P(z)‘:‘ao +alz+...+anz”‘s\ao\ﬂal\-\z\+...+\an\-‘z”‘s

<|ag|+|ag|r+...+|a,|r" =[a,|r" [1+{|a” 1|1++MLD

When r — oo the sum in the square brackets tends to 0. Therefore, for each

>0, you can specify Iy (&), that when r>ry(¢), the inequality
IP(2)|<|an|r" (1+¢), |z]<r (2.3)
is hold.
Let's consider the value |P(z)| at any point Z, that located on the circle |z|=r
. For it |zg| = r. At this point, the inequality (2.3) also takes place, when r>ry(&). On
the other hand,

‘P(z)‘:‘ao +agz+...+a,2" | <|ag|+|ag]|z|+...+]an|-|2"|

P(z)|= anz{,‘+(an 178 1+---+a0)‘2‘an28‘ ‘an 20 1+---+a0‘2
>[an[20[" ~[an-a| - |20|" =+ ~[ao| =[an| - r" ~[an |- "~ —Jag| =
a
=|an|r” |:| | }++Min} _
an| T [an| ¥
Therefore, when >y (&), we obtain
P(20)[=[an|r" (1-2), [z0| =T (24)

Returning to (2.3), we conclude that this inequality is also true at the point of the

circle |z| <r, where |P(z)| reaches its maximum M (r). Therefore,
M(r)<|a,[r"(1+¢&), r>r(e). (2.5)
On the other hand, the value |P(z)| at the point Zg located on the circle |z|=r does

not exceed M (r). Hence,
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M(r)=a,|r"(1-¢), r>r(e). (2.6)
From (2.5) and (2.6) it follows that

1—33m31+5, r>n(e),
[ag|r"

and since & is an arbitrary positive number, then

lim m:1.

-2, [ "

The resulting relation we’ll formulate as follows: the maximum modulus of the
polynomial of the power N is asymptotically equal to the modulus of the leading term

of the polynomial.

Now let's calculate the functions M (r)for e?,cosz and sinz. To distinguish
them, let’s denote M (r,ez), M (r,cosz), M (r,sinz).

In each of these cases, we use the estimate of the modulus of the sum of the

power series

A oz 27" -
el=1+—+—++—+ <1+ —+ =4+ —+--<
1 21! n! 1 2! n!
ror ("
SLb—+—+ b —+, |Z7f<r,
1 21 n!
So, |e?|<e" in the disc |z|<r. But at the point Z=I, e’ =e"and |¢?|=¢". Therefore,

at this point, the modulus of the exponential function reaches the maximum value. And

M(r,ez):max{ez}:er. (2.7)
|z|<r
Similarly
4 6 2 4 .6
\cosz\:l—£+z L £1+‘Z‘ +‘Z‘ +‘Z‘ 4o <
11 41 6! 2! 41 6!
2 4 6
r
SI+—+—+—+-, |7<r
21 41 6l



The sum of the series on the right side of the last inequality is equal to

chr :i(er +e‘r). Therefore,
2
1 _
lcosz|< E(er +e r), lz|<r.

But at the point z =ir

cosz = cos(ir) = %(ei(") +e_i(ir)) = %(e‘r +er), lz|<r,

I e.

M (r,cosz)=max{|cosz|} = l(e‘r +er) (2.8)

lzj<r 2 ' '

3 5 3 5

Finally, |sinz| s\z\+H+H+---s r+r—+r—+---:shr:1(er —e‘r). But at the
31 5! 31 5! 2
point z =ir, |Sin z|:\sin(ir)\:‘%(ei(")—e‘i(")) = %(e‘r—er) %(er—e‘r)
Therefore,
M (r,sin z):r|£1|2>r<{|sin z|}:%(er—e‘r), (2.9)

Now let's make sure that the functions M (r,ez), M (r,cosz), M (r,sinz) are
increasing. For the first function it is obvious. For M (r,sinz), it follows from the fact
that e" is increasing function, and €' is decreasing function, so the difference

' —e™' s increasing: TO check if M (r,cosz) increases, when r>0, it is enough to

find its derivative

(%(er +e‘r)j’ =%(er —e_r)>0, r>0.

Therefore, M (r,cosz) is increasing, when r>0 .
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Let O<r<oo. Then ¢(n)=|a,|r" —>0, when n—o and there exists
max {¢(n):n >0}, which we’ll denote as x(r), such that z(r)=max{p(n):n>0}.
This value x(r) is called the maximum term of the series (2.1). From Cauchy’s
inequality follows that ,u(r)S M (r) The last inequality is also called Cauchy’s

inequality. In the other hand, for each « €[0;1], we have

o0 0 n 0
M (r)< Z|an|r":2|an|(Lj a”s,u(Lj a".
n=0 n=0 @ o

n=0
So

M (r)s;z(L)i . (2.10)

Note that z(r)— o when r — co.

Order and type of entire function

The value

p=lim M (2.11)

r—o0 Inr

is called the order of the function, and if 0< p <o, the value of
- InM (r)
o=Ilim———= (2.12)
r>o P
it is called the type of entire function f . It is said that the function f of the order
p(0<p<w) has minimal, normal, maximum type, if 0=0,0<o<® =0

correspondingly.
The formulas (2.11), (2.12) allow us using the formulas (2.7), (2.8) and (2.9) to

find the order and type of the functions e, cosz, sinz. Since
M (r,ez): e’

then the order of the function p =1 and the type o =1. Next
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c lie™
2

Obviously, that e=2" —0(r — ) and therefore, the fraction on the right side of the

M (r,cosz)=%(er +e‘r)=e

: : : 1
last inequality approaching to > Let’s calculate

—2r —2r
InM(r,cosz)=r+In1+; =r[l+lln1+: ]
r

where the expression in parentheses tends to 1, whenr —oco. Once agaon

logarithmization will give

—2r
InInM(r,cosz):lnr+ln[l+llnl+; ]
r

where the second term on the right side tends to 0, when r — co. Therefore

=-2r
mlnlnM(r,cosz):m 1+iln 1+1|nl+e 1
r—>o0 Inr F—>o0 Inr r 2

This means that for the function COSZ we have , =1 and o =1.
We propose to determine independently the order and type of the functions:

a) f(z)=sinz. Answer: p=1,0=1;
b) f(z)=e?. Answer: M(r,ezk):erk,p:k,gzl;
c) f(z)=e*.  Answer: M (r,eek)=eer,p:oo,0' — uncertain.

In all examples the order of the entire function was equal to the integer number

or 0. But there exists the functions of the fractional orders. For example,

1 _
f (z) = E(e*/E +e ﬁ) . This function is entire, because

eﬁ:1+£+£+ﬂ+...

2t 3
e_\’/E =1_£+£_ﬁ+....
mw 2t 3
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And so it is represented everywhere by the convergent power series
2 .3

%(eﬁ+e‘ﬁ):1+£+ Lz

2! 41 ¢!
1 _ 1 B
M (r,i(e‘ﬁﬂg ﬁ))zg(e*ﬁ+e ﬁ) and it is easy to check, that orderp:% and

type o =1.
Let's show now that in the defined order and type of the entire function we can
take 4(r) instead of M (T).

Theorem 2.3. The next equalities take place

fim Indna(r) _ WM:G. (2 .13)

ro Inr " oo P

Proof. Let’s denote

— Inlny(r)’ o, = Iim In,u(r)

r—oo Inr r—ow r,O
From the Cauchy’s inequality x(r)<M(r) follows that p<p, 01<0.
Next, if we assume that o <0, then by definition of p we’ll get that

Inlnu(r)<(p +&)Inr for each >0, when r>ry(e), that is Ing(r)<ra*e.

Therefore, from (2.10) we get

INM (r)<In y(éj - Inﬁ <t 2 (140(1)), roow

whence InInM (r)<(p,+¢)Inr+0O(1), when I —> 0. From the last inequality it
follows that p < p, + ¢, and due to arbitrariness of &, we have p < py. In the case, when
P =0, the inequality p < py is obvious. So, p = 0.

When 0<p<wo and 07<o from the definition of 071, we have

Inu(r)<(oy+¢)r? for each £>0, when rzro(g) and from (2.10) we obtain

InM (r)S(O'1+g)a_prp(l+ 0(1)), r —oo. Hence, o <(oy+¢)a . Since & and &
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are the arbitrary numbers, then approaching & to 0 and & to 1, we get 0 < 0y. When

0y = ©, the inequality o < oyis obvious, So, o = 07, and the theorem is proved.
The calculation of the order and type of entire function, using the definition, i. e.
from the formulas (2.11) and (2.12), is quite time-consuming, because it is associated
with finding the maximum of the modulus of each concrete function. Therefore, there
Is a natural desire to obtain the formulas for calculating the order and type of the entire
function through the coefficients of the series (2.1).
Theorem 2.4. The next equalities are hold

— nlnn

: — N
p=lim——=— &= Tim—[a,["". (2.14)
n—>oo—|n|an| n—w o
Proof. Let's denote
— ninn — N
lim =k, Tim —a,/"" =9
n—>oo—|n|an| n—w €0

From the first equality (2.13) we have that y(r)sexp{r/”g}, when p < oo for each
£>0, when r>ry(&). Then by definition of the x(r), we get

lan|<u(r)r " <r ™ exp{r”*g}
for all n>0 and all r>r(s). Let's choose r=n""""*). Then we have that

n
|an|£(e/n1/(p+‘9)) , when n2>ny. It follows that k< ,. When p=o the last

inequality is trivial.

Suppose now that o<o. From the second equality (2.12) we have

y(r)gexp{(o+g)rp} foreach &>0, when r>ry(¢), as before,

la,|<r™ exp{(a +¢) rp}
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Up
n
for all n>0and r>ry(g). Let’s choose r:[—] . Then
plo+e)

)n/p

lag|<(ep(c+¢)/n)"", when n>ng (). Whence it easily follows that ¢ < o. When

o =0, the inequality 4 < ¢ is trivial.

Let's now prove the opposite inequalities k > o and 3> o. Suppose first that
k < co. Then from the definition of k we have |a,|<n™"(*#), when n>ny(&)=>1.
Therefore

w(r)= max{|an|rn 'n 20} < max{max{|an|rn :0<n< no(g)}} :
max{n_n/(k”)rn n> no(g)} < max{O(r”O(g))} ,

exp(max{p(t):t=1}), r—oo,

where (p(t):—lzlnt +tinr, Since P'(t)=- IEt+1+ Inr and
+& tE

¢"(t)=-1/(t(k +&)) <0, then the maximum of the function ¢ is reaches at the point

1 )
t==rk* j e
e

k+e

() <moc{ofinr). 6| -0(1). £

According to the first equality (2.13), we get that o <k. When k = the inequality

p<kistrivial. So, p =k, and first equality (2.14) is proved.

n/p
Suppose that < oo. Then |an|§(%ep(l9+g)j foreach £>0, when n>ng(&)>1

and

pu(r)< max{O(r”"(g)), exp(max{gp(t):t 21})} ,

t (1
where now @(t)= > In(fep(S + g)j +tinr,
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, 1 1, (1
Since @ (t)=lnr——+—ln(—ep(3+e)j and ¢ (t) =~ <0, the maximum of the
p p \t pt

modulus of the function ¢ is reached at the point t=p(9+¢)r” and
Iny(r)smax{o(ln r),(9+g)rp}:(l+o(1))(9+g)rp,r—>oo. Hence, from (2.13)

it follows, that o <8. When 9= the inequality o <9 is trivial. So,o =9, and
second equality (2.14) is proved.

Now consider the question about the derivative and zeros of an entire function.

Let's formulate the following obvious statement: 1) if f(z) is the entire function of
order p,0< p< o0 | then the function P(z)f(z), where P(z) is the polynomial, has
the order p; 2) if f(z) is the entire function of the order p,0<p <o, and type
0,0< 0 <o, then the function P(z) f (z) has the type ¢ and order p.

Theorem 2.5. The function f(z) and its derived f’(z) have the same orders

and types.
Proof. The functions f'(z) and zf’(z) have the equal orders and types.

Therefore, it is enough to show that functions f(z) and zf'(z) have same orders and

types.
Let f(z), represented by the series (1.1), has the order . Then

0

zf'(z)=>b,2", b, =na,.
n=1

According to the first of the formulas (2.14) the order of this function is equal to
m ninn . Inn

'Ol_n—mln\l/bn\ n—>oo|n4n/1/b n—>wln,ﬂ/1/ na, )

Inn — Inn
= lim = |lim ———
n—oo | n/\l/a \—In\/_ n—mln«n/\l/a \

Let f(z) now has the order o and type o. The order of the function zf'(z) is

equal to p, and its type 07 is calculated by the second of the formulas (2.14)
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1\P

oy = lim —\b " = Tim L\nan\”/n = lim —\a " an | = lim —\a

‘p/n i
n—oo n—ow €0 n—o0 n—o0

The theorem is proved.

Let’s remind that a point is called a zero of the function f, if f(a)=0. If

f(a)=f'(a)=---=f"(a)=0,and (™ (a)=0, then a is called a zero of the n-

2 P

th order of the function f . For example, consider the function Sinz =z —a a —es

. From the series expansion we can see that z=0 is a zero of the 1-st order. Now let's
23 7
consider the function Z—sinz = a—g  z=0, for which is obvious that z=0 is a
zero of the third order.
Let Ay, 4p;..., An,... is the sequence of the complex numbers, and |4, | T o0, 4, #0

. Suppose that there exists a finite ¢, such that

o0

(2.15)

n=1|in|a
The lower bound 7 of the set of numbers «, that satisfy the condition (2.15), is called

the convergence indicator of the sequence {x%n}. If 7 is finite, then for each >0

> >
< o0
n:1|ﬂ'n|r+g - |ln|2' &

If @ does not exist, when the condition (2.15) is hold, then 7 =00,

Let f(z) be the entire function of the finite order p and 43, 4p;....4,,... are its
zeros, that differs from the beginning of the coordinates. We suppose, that Mﬂ\ T o and
each zero is written as many times in the sequence {ﬁn}, which is its multiplicity.

Theorem 2.6. Let f(z) be the entire function of the finite order p and

M A Ay | 2| T oo, 4 # 0 are its zeros. Then ¢ <p.
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Proof. We suppose that f(0)=0 (otherwise we would divide f(z) by the
corresponding power of Z and get the function of order p, which doen’t equal zero at
the beginning of the coordinates and for which 4,4,,...,4, are zeros). Denote
I =|4,|, R=2r,. The function f(z) has at least N zeros 4,4,,..., 4y, in the circle
|z|<R. Then, by the well-known estimate

2" _[Bjn < RY < M (2r) <e" n>ny,
W) A [T(0)

when n is large enough, then we have

+3¢
niN2<rf™ n<rf2 ¢ > nt/(p+22), (P38 s p=LT% 51,
p+2¢
o0 1 ) )
So, < oo, Where ¢>0 is arbitrary number. Therefore, r < p.
|/1 |p+3g r
n=1 n

Infinite products

The expression

(1+a)(1+ay)...(1+a,)..., a,=-1 (n>1) (2.16)

o0

is called the infinite product and is denoted H(1+an). The expression
n=1

n

Pn :H(1+ a, ) is called the partial product. It is said that the infinite product
k=1

converges, if there exists lim P,=pP#0,0. Otherwise, it is called the divergent
N—o0

product. If it is convergent, then denote p=] [(1+a,).
n=1

Necessary condition of convergence. If the product is convergent, then

a,—>0,n—>ow,
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Pn
Pn-1

Indeed, 1+a, = —1(n— ) and it follows that &, —0(n— ).

Sufficient condition of convergence. If a, = O(n 21), then the product (2.16)
and the seriesz a,, are convergent or divergent simultaneously.
n=1
Indeed, since in this case P, is non-decreasing function of N then P, is
tending either to the finite limit or to . Further, from 1+a,<e* we have
a+ay+...+a, <(l+a)(l+ay)...(1+a,)<er™®" % These inequalities show

that P, and @ +a, +...+4a, are bounded or unbounded at the same time, and this

completes the proof.

The product (2.16) is absolutely convergent, if the product

0

H(1+\an\) (2.17)

n=1

is convergent. The product is absolutely convergent if and only if the series Z |an| IS
n=1

convergent. If the product (2.17) is divergent, then (2.16) is conditionally convergent.

Let's show that the absolutely convergent product is convergent. Let's denote

P, = i{uak) P, H(l+|ak|)

We have
Pn— Pna=(1+a)(1+a)...(1+a,4)a,, P—Ra= (1+ |al|)° . -(1+ ‘an—lman‘ ’

S0, | P — Pny| < Py — Py . Let the product is absolutely convergent. Then there exists

lim B, =P#00 and, hence, the serlesZ (P,—P,_1) is convergent. But then
n—o0 n=2

the series Z - Pn 1 IS convergent too. Therefore, there exists lim Py =P #>0,
_ N—00
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Let's make sure that P#0. Indeed, the series Z|an| Is convergent and
n=1

1+a, > n—>o. Therefore, the series Y (1—a,/(1+a,)) converges. Hence, the
n=

product

1
tends to some finite limit. But this product is equal to —. So, the limit of the product
n

P, is different from zero.

Note that the convergence of the product represented in the form Hun IS
n=1

0]
equivalent to the convergence of the series Z Inu, .
n=n,

Now let's consider the functional infinite products

[ee}

[T(x+u,(2)),

n=1
(2.18)

where u,(z) are the functions defined in the domain D, andu,(z)#—1in D.

The product (2.18) is uniformly convergent in the domain D, if it is convergent

at every point ze D. We have

S [un(2)| <0, 2eD,
n=1

then the product (2.18) is convergent in the domain D. The product (2.18) is
convergent to p(z) at every point z € D and we write

0

p(2)=[1(1+un(2)).

n=1
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The product (2.18) is called uniformly convergent in the domain D, if the

n
sequence of partial products pn(z):H(l+ Uy (z)) converges in the domain D. The
k=1

infinite product is called uniformly convergent inside of the domain D, if the sequence
of partial products converges uniformly inside the domain D.
A sufficient sign of the uniform convergence in the domain. If in the domain

D
us(2)|<a, (n=1), ian <o,
n—1

then in the domain D the product (2.18) converges uniformly.
Indeed, p,,(z)— Pna(z) <(1+u(2))...(1+uy1(2))un(2)

194(2) = P2 (2)] < 2+ (2)])-- (L4 ol (2) Jun (2)] <

<e%™ ™ .a <Kla,|, K=const,

therefore, the series )" ( Py (2)— P_1(2)) converges uniformly in D, hence, {p, ()}
n=2

converges uniformly inD.

A sufficient sign of the uniform convergence in the domain. Let u,(z) are the

analytical functions in a simple connected domain D. If the series

o0

> In(1+u,(2)) (2.19)

n=1
converges uniformly in D, then the product (2.18) converges uniformly inside the
domain D.
Indeed, we have
n n
[T(1+uy (z))—exp{Zln(1+ uk(z))}, zeD.
k=1

And we get



The right part is the analytical function in D, and therefore p(z) is the analytical

function in D. Next

p(2)- 100 (2) -0 (e (2) |-

k=1 k=1

M-

()|

k

-wof-on]- o]

Let K is some compact in D. The function p(z) is bounded on the compact, i. e.

1

|p(z)| <M, ze K. The series (1.19) converges uniformly on the compact K, so

Z In(1+u (2))

<—<l zeK, n>N.
k=n+1 2M 2

Hence,

that proves the uniform convergence (2.18) inside D.

Until now, we assumed that u,(z)#=—-1in D. Let's assume that D is a simple
connected domain, u,(z) are the analytical functions in D, which have the following
property: whatever Kc D, there is a number Ng= NO(K), such that
up(z)#=-1LzeK,n>Ny.

We assume that the product (2.18) converges in D, if the product

0

H (1+ un(z)), z € K converges, whatever the compact K< D. Then the function
n=N

o0

p(z)= H(1+ U (z)) can convert to zero at some points of the domain D, at the point
n=1

of such type at least one of the multipliers of the product will convert to zero.
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Then a sufficient sign of the uniform convergence in the domain D will be

formulated as follows: if the series " In(1+u,(z)),No=N  (K) converges
n=N
uniformly on the arbitrary compact K <= D, then the product will converge uniformly
inside the domain D.
Decomposition of entire function into infinite product

Let's firstly consider the method of constructing the entire function with the given

zeros. Let's denote

uz "
E(u,0)=1-u, E(u,n)z(l—u)exp{u +?+---?}, n>1.

These expressions are called the primary multipliers. Their behavior depends upon n
, When U—o00,

Lema 2.1. The next inequalities are hold

In E(u,n)Hs‘ln E(u,n)‘sz\u\nﬂ, \u\s%, (2.20)
u? u" n 1
Inlexp Ut e <(2u))", \U\ZE. (2.21)
Proof. We have
2 n 2 n n+l
InE(u,n)=In(l—u)+u+u—+---+u—:[—u—u——---—u——u——---j+
n 2 n n+l
2 un un+l un+2 1
U — b= ———e [
n n+l n+2 2

whence

INE(un)<ju™ +u"* 4= |u|”+1(1+%+2i2+---j: 2™
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. ) 1
Now let's prove the second inequality. Let |u| ZE . We have

R e P et
n <l|e 2 n <e n ,
2 n
‘UH%*'*%S(‘U‘H+"'+1)‘“‘nS(Zn_1+---+1)\u\”szn\u\n.

2 n

u
U+ + 4+— 2 n
TherEfore, e ( | |) n <e( |U|>

Whence
| u+u22+---L:1n <(2 n >1
] e
Theorem 2.7. Let |z <[z, <+, lim z, =00, and let the entire P, are such that

n—oo

for the arbitrary I

© (r Py
Z(_] <o, 1=z,

n=1 rn

Then the product

© 0 2 p,—1

Z Z Zm
| | ( — ):l |(1——)exp — Attt = (2.22)
n=1 n n=1 Zn Zn 22 ( pn _1) Zn "

converges in all plane and defines the entire function F(z), which has zeros at the

points Zj,Z,,... and only in them.

Proof. Let R >0, ||<R and |z,|<2R, when n> N. From the inequality (2.20)

, P
InE(—,pn—l}SZK—] . |zZ[<R,n>N,
Zn rn
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s0, the series ) In E{Zi P, —lj converges uniformly in |z|<R and then the product
n=N n

H E( ] converges uniformly in |z|<R to the analytical function in |z|<R

, that doesn’t equal zero. Then the product (2.22) also converges to the analytical

function F(z) in |z|<R, moreover this function converts into zero only at the points
zj, that lie in the circle of the radius R. Since Ris an arbitrary number, so the theorem

Is proved.

Notice that we can take p, =n(n=>1).

Theorem 2.8. Let f(z) is the entire function, Z;,Z,...are zeros (moreover each
of them is written out as many times as its multiplicity shows), that differs from the
beginning of the coordinates. Let's choose the integer Pp,, such that for the arbitrary

I' the condition

o (p P
Z[—j <o, Ty=|z,

is hold. Then

where h(z) is the entire function.

Proof. Let's form a product (2.22) and let it converges to F(z). Denote
H(z)=f(z)/z*F(z), where A is the multiplicity of zero z=0. This is the entire
function  that IS not  converted anywhere  to  zero. Hence,

H'(¢)

z
h(z)=InH( IH—d§+ InH (0) is the entire function. But then
0

f(z)=2"H(2)F(2)= z}“eh(z)F(z),

and the theorem is proved.
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Let f(z) is the entire function of the order p and Z,2y,...,Zy, #0 are its zeros.

And 7 is the convergence indicator of the sequence {zm}. According to the Theorem

2.6, we have r < p. Let k is the smallest integer, that satisfies the condition

PP (2.23)
m:1|Zm|

o k+1
r
Then Z{—] <o, Iy =|Zm| for arbitrary . By the Theorem 1.8, we get

0 2 k
f(z)=zleh(z)H[l—i]exp{i+z—+ +i} (2.24)

m=1\  Zm Zn 22

where h(z)is the polynomial of the degree h < . The expression

o0 2 k
F(z)= H(l—ijexp{i+ - +---+Z—} (2.25)

=1 Zm Zm 22 I(Z:;1

is called the canonical product.
Theorem 2.9. The order of the canonical product (2.25) is equal to 7 and if

o0

2

T
m:1|Zm|

<o, (2.26)

then F(z) is the entire function of the order7 of the finite type.

Proof. In (2.25) the integer k is associated with 7 by ratio k <z <k +1. Let @

be the number that satisfies the conditions, 7 <& <k +1 and Zl/|zm|9 <o, This @
m=1

can be chosen very close to 7 and in the case (2.26) we will accept 8 =r. By the Lemma

2.1 we have
E(uk)|< o) _ (2ul) - lul< E
2 uk
eu+?+”'+? < e(2|u|) <2|U |u| > i

5"
From the last inequality it follows that
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‘E (u, k)‘ < e(2|u|)g+ln(l+|u|) < e(b|u|)9 , b<owo, |uz 1 .
2

So, for arbitrary U we have \E(u,k)\ge(m”') . Hence, we get

IF( ‘<exp{ i }_exp{a|z|e}, a<oo. (2.27)

Therefore, the order of the function F(z) pp <6. But 6 is very close to 7. Hence,

Pg <7 .Bythe Theorem 2.6 7< pg. Then 7= pg.
In the case of (2.26) we will accept that @ = and then from (2.27) it is clear that
F (z) Is the entire function of the order 7 of the finite type (the fact that it has the order

7 we have already proved earlier).
Let’s formulate without the proving the basic theorem on the decomposition of
the entire function of the finite order into the infinite product.

Theorem 2.10 (Borel’s). Let f(z) be the entire function of the finite order p,
Z1,Zy,... are its zeros, 7 be the indicator of convergence of the sequence {zm}, kis
the smallest integer, that satisfies the condition

— 1
2 s
m=1|Zm|
Then the representation (2.24) takes place, moreover p = max{h,r}.

Corollary 2.1. If pis not an integer, thenz = p.

Control questions

1. Formulate the Liouville's theorem.

2. Formulate the definition of the order and the type of the function.

3. Give the formulas for calculation of the order and type of the function using the
coefficients of the series.

4. What is the zero of the function?

5. Which function is called an entire?
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6. Formulate the definitions of the the maximum of the modulus and the maximum
term of the entire function.

7. Formulate a sufficient sign of the convergence of the numerical product.

8. Formulate a sufficient sign of the uniform convergence of the functional infinite
product in the domain.

9. Formulate Borrell's theorem of the decomposition of the entire function of the
finite order into the infinite product.

Examples of problem solving

-2ninn n

1. Find the order and type of the function Ze
n=1

We have

_Tm ninn I—nlnn 1
n—>oo—n|an| nooz Inn 2’

1

/n 2n, Py
= lim —\an\p = lim = ( 2”'””)ZH -,
¢

n—w €p n—o @

2. Do the decomposition of the function sin z into the infinite product.

Zeros of this function are +kz (k=0,1,2,...), p=1 z=1 k=1. The product of

the multipliers, that correspond to zeros K7 and —K7 | is equal to

7 z 7 _z 72
(1——jek” (1+—je or 212
kz kzr k27z'2

Therefore

0 2
sinz = zeA”BH[l—kz—)

k=1
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2

. sinz Az+B - yA . .
From the equality T:e o H(l—wj when z -0, we obtain e® =1, i.e.
k=1 a

B =0 . Hence,

o0 2
sinz= zeAZH(l—#J.

k=1

The function sinz is odd, so e” =e =1 So, A=0 and

sinz=z2 1-——
2 2|
=1\ K7

3. Investigate the convergence of the product H(1+ 2n1 J.
n=1 +

Let's consider the corresponding series Y | . Since

- . <in,andthe
2 +1 2"+1 2

o0
series 2‘12_” converges as an infinitely decreasing geometric progression, hence, the
n=

product will be convergent.

n(n-1)
2

. Let’s apply the

4. Investigate the convergence of the product H 142

|
n=1 n!

n(n-1)
sign of D'Alembert to the corresponding series Z Y
n=1 )
n <
Un+1 — |Z| - lim Un+1 _ 0’ |Z|—1’
Uy N+l nom| Uy | [oo, [2]>1.

So, the series and, accordingly, the product converges for \z\ <1
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Tasks for independent work
1. Using the formulas (2.13), determine the orders and types of the functions (n e N

a) f(z)=coz" +c;z" 4+ +c,. Answer: p—0;
b) f(z)=e* (a>0). Answer: p=n,c=a;

c) f(z)=2"e* . Answer: p=10=3;

d) f(z)=2z%""+¢e%. Answer: p=lo0=3;

e) f(z)=e5z—3e223.Answer: ,0=3,G:2;

f) f(z)=e?cosz . Answer: p=L0=2;

9) f(z)=cosvz.Answer: p==,0=1.

I\JII—‘

2. Using the formulas (2.14), determine the orders and types of the functions:

n

a) f(z)=Z[%} . Answer: p=1,(7=% ;

n=1

n/a

b) f( Z(—mnj "(a>0). Answer: p=a, oc=w;
1

n/a

(1

C) f(Z)=Z(H|ﬂnj Zn(a>0)_AnSWer:p:a,O':O;
n=2

d) f(z):Ze‘”zzn . Answer: =0 ;
n=0

e) f( Zz /n"" (a>0). Answer: p—0;

f) f(z)=) a" 2"(0<a<1). Answer: p=0;
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Q
Il
|

g9) f( Zz /n“"(a>0). Answer: p—;
n=1

3. Investigate the following infinite products for convergence:

- 2 _ 2_1). O :
a) g(n 4)/(n 1) Answer: it converges

b) [J(1+1/n(n+2)). Answer: it converges;

(2n+1)(2n+7)

Answer: it converges;
2 H 2n+3 2n+5) J

d) H . Answer: it diverges;
n=1"

e) [ J(n +1)2 /n(n+2). Answer: it converges;
n=1

o0

f) H(l+1/np). Answer: it converges when p>1;

n=1

g) H\”/1+1/ n. Answer: it converges;
n=1

h) TT"/n. Answer: it converges.
n-1

4. Investigate for absolute convergence:

0 _ n+1
a) H 1+¢ . Answer: it conditionally converges;

b) H 1+ ol Answer: it conditionally converges;
n
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)I’H-l

C) H[1+(_n—p] Answer: it converges absolutely, when
n=1

conditionally converges, when %< p<l;

=1 (-)" . -

dJ] 1+W . Answer: it conditionally converges;
n=2

e) H\/ﬁ/(\/ﬁ+(—1)”). Answer; it diverges;
n=2

f) Hn(_l)n . Answer: it diverges;
]

g) I_I\nln(_l)n . Answer: it conditionally converges;
]

o0 1
h) H{H%(—l)z”(”l)}. Answer: it conditionally converges.
n=1

5. Find the areas of convergence of products:

a) ﬁ(l—z”) . Answer: |z|<1;
n=1
o0 Zn
by [ [|1+=|. Answer: |z]<2;
n=1 2
00 22
c) H[l——} Answer: |z|<oo;
) 1 =N .
d [[|1-|1-=] z7"| Answer: |z|>1;

il \" 1
e) H[1+(1+—) Z J Answer: |Z|<E;

82

p>1 and



e6)
z
— A X ;
f) |:1| cos—. Answer 2| < o0;

“n. z

9) [[=sin=. Answer: |z|<o ;
n—lZ n
© 7 _z

h) H(1+—j€ . Answer: |z|< .
n=1 n

6. Prove that following decompositions take place:

a) coSz= 1_[(1—422 | z° (2K +1)2);
k=0

b) shz = zﬁ(l+ 22/ k27r2);
k=1

¢) chz =ﬁ(1+4z2/7z2(2k +17)0)
k=0

4 0
d) e? —1= zeZH(1+ z° /4k27z2),
L
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Chapter II1. Dirichlet Series

Convergence area, convergence abscissas

Let (ﬂﬂ) be the increasing to the + sequence of the positive numbers and
A, =0, and (an) be the sequence of complex numbers. The series
F(s)=ap+ ) a,exp(st,) (s=o+it) (3.1)
n=1
is called the Dirichlet series (or exponent series), the numbers 4, are its indicators, and

a, — the coefficients.

If in Taylor's series

f(z)=> a,2", z=re", (3.2)
n=0
then we’ll obtain the Dirichlet series
F(s)= f(es):Zanexp(sn) (3.1)
n=0

A, =N. Thus, the Dirichlet series is a generalization of the Taylor series.

g(—s):inS -y exp(sinn) . (3.3)
n=1 n=1

The function g(s) is called the Riemann function and plays an important role in the

number theory.
To find the radius R of convergence of the series (3.2), the Cauchy-Hadamar

formula is used

1 —
E:an/m . (3.4)

n—oo
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If R>0, then on each compact from the circle {z:|z|<R} the series (3.2) is
convergent absolutely and uniformly. It follows that the series (3.1’) is convergent
absolutely and uniformly on each compact from the half-plane {s:Res<o}. From

(3.4) it follows that

— 1 1,01
o, =—lim =Infa,|= lim =In.—
N N >N |ay]

The information about the series (3.1") cannot be automatically transferred to the series
(3.1) with the arbitrary indicators. In generally, the series (3.1) may be convergent in

some half-plane, but not absolutly convergent.

Let's A, and By be the arbitrary values, and C, = A, +...+A,,n>p. Then
Ay =Cy, Ay =C,-C,y,n>p and

q
Z‘ AnBn =CpBp + Bp+1(Cp+l_Cp)+ Bp+2(Cp+2 _Cp+l)+"'+

n=p
+Bq(Cq —Cq_l)ch(Bp —Bp+1)+Cp+1(Bp+1—Bp+2)+---+Cq_1(Bq_1—Bq)+
+CyBy = qZ_l(Bn —B,1)Ch + ByCy - (3.5)
n=p

The formula (3.5) is called the Abel transformation and with its help we will prove the
following theorem, which is the analogous to the well-known Abel lemma for the

power series.

Theorem 3.1. If the Dirichlet series (3.1) is convergent at the pointSy € C, then
it is convergent in the half-plane {S:Res< Reso} and uniformly convergent in the

closed angle
{s:‘arg(s—so)—yz‘Sy}, O<y<%. (3.6)
Proof. Using the formula (3.5), we obtain

q q
Z anesln _ Z anesoﬂne(s—so)ﬂn _
n=p n=p
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= Z (e(s_so)/?“n _e(s_so)/lnu)i ajesolj + e(s_so)ﬂq i ajesoﬂ'j . (37)
j=p

n=p i=p

Let Sy =0p +ity. If 0 <0y, then

Aml
e(S—SO)ﬂn _e(s So)ﬂnﬂ — (S_So) J e(s So)xdx <
2/rl
ﬂ‘n+1 |S—S |
< |3 _ SO| I e(G—O'o)XdX _ —O[e(a—ao)/ln _e(a—ao )AM:|.
1 00 — O

n

Since the series (3.1) is convergent at the point Sy, then for each &>0 there

exists Ny € N, such that

<¢&

n
PIETCRS
i=p

when N2 p2ny. Therefore, from (3.7) we get

q _ <l g1
3 agesh|< =Sl [ _el7)4 T el <
n=p

CTO—G -

n=p

<e |SO — 5| |:e(a—0'0)ﬂ,p _ e(O'—Go)ﬂq :| + ge(a—ao ) <

Opg—O
Sg— 9| (o- - So—S
c el o, | oo [o=sl ) 9
O-O_G Og—O

From the estimate (3.8) it immediately follows that the series (3.1) is convergent in

each point of the half-plane {S:Res< Reso}. If S belongs to the angle (3.6), then

|9 =8|/ (09 —0) <1/ cosy <+oo and from (1.8) it follows that
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that is, in the angle (3.6) the series (3.1) is uniformly convergent. The Theorem 3.1 is

proved.

From the Theorem 3.1 it follows: if the series (1.1) converges at the point S,
then its sum F(s) is an analytical function in the half-plane {s:Res <Resg}.

From this theorem it follows, that the series (3.1) either is convergent

everywhere in C or it is divergent everywhere in C, or it is convergent in some half-

plane {s:Res <o} and divergent in the half-plane {s:Res>o}. Inthe last case, the
number O is called the abscissa of convergence of the series (3.1), the half-plane
{s:Res< o} is called the half-plane of convergence, the line {s:Res=o} —the line
of convergence. If the Dirichlet series converges in C, then we think that o¢ =+ and
if it does not converge anywhere, then we think that o ¢ =—.

Suppose that the series (3.1) at the point Sy € C is absolutely convergent, that is,

Z‘an‘e%’l” <+, og=Res,.

n=1
Then, if ResS<o,, then |a,|e** <|a,|e®™ and, consequently, the series (3.1) is
absolutely and uniformly convergent in the half-plane {s: Res < ao}. It follows that

the series (3.1) is absolutely convergent everywhere in C, or at anyone point in C it

is not absolutely convergent, or there exists a number o, € R such that the series

converges absolutely in the half-plane {s: Res<aa} and does not converge

absolutely at every point of the half-plane {s: Res > aa}. This number o4 is called
the abscissa of the absolutely convergence of the Dirichlet series (3.1). If the Dirichlet

series is absolutely convergent in C, then o,=+0, and if it is not absolutely
convergent anywhere, then o, =—%.

As noted above, not always 0, = 0. For example, for the series

1+ i(—l)n exp(sinn) (3.9)
n=1
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we have 0, =1 and o:=0. There are the Dirichlet series for which 0, =—% and

O = +00 . For examle,

1+ i(—l)n%exp(s\/lnlnn) . (3.10)
n=3

In fact, let s=o>0_ Then %exp(o- Inlnn)—>0(n —>oo). To apply the Leibniz

sign, it is enough to show that the inequality is true for sufficiently large n

%exp(a Inin n)aﬁexp(mlln In(n —1)),

and it’s true, because

- —\__ (1+o@))o .
a(\/lnlnn Inin(n 1))_2nlnnm’n_) ,

Inn—In(n—l):(1+o(1))%, n—oo.

So the series (3.10) converges at each point s=o>0 and by the Theorem3.1 it

converges everywhere in C. However

Zlexp(a Inlnn):+oo
n=3n
for each o e R, thatis 0, =+00.
Note that 03 <0o. If 04>-00, then for arbitrary >0 in each half-plane
{s:Res<cfa —g} the series (1.1) is uniformly convergent. The upper bound of the

numbers «  such that the series (3.1) is uniformly convergent in the half-plane
{s ‘Res Sa} is called the abscissa o of uniformly convergence . Then
0yS0y=0.

Let's determine the abscissa of convergence. Denote
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= lim —In—: lim : (3.11)
n—>00 ‘an‘ nN—o0 ﬂ'n
and for y >0 and 5 eR let
def 1)l O,
h(y,6) = lim b= )r|a“|+ iy (3.12)
N—o0 nn

Theorem 3.2. For each Dirichlet series (3.1) 03 <0, 03 <ag. If h(y,6)>1,
then oy 2 yo.—dand 0y 2 yy -0
Proof. The inequality 03 <o is obvious. Let g <+00. Then for each & > &g

there exists the increasing sequence of natural numbers (nk), such that

‘ank ‘ > exp(—oc/ink )

‘ank ‘exp(aﬂnk ) > exp{(—a +0) An, } >1
for all o> «. Hence, due to the arbitrariness of «, it follows that the series (3.1)
converges at each point S=0 > ag and, hence, 0y < g . For oy =+ this inequality
is obvious.

If g >—00, then for each o <yay—0 we have

. 1.1 o+06
lim —Ih—> ,
n—>°0ﬂ'n a, v
l.e.
o 0+5
nfa |+ 2791 = ﬂ,n(——l il j<o
onl Y T

for all sufficiently large N. Therefore, for such N the next inequality

\an\exp(aln)zexp{((y1)In\an\+5ﬂn)+y(ln\an\+ ‘”%J}s

/4

—-1)In|a, |+ o4,
Sexp{_(y )Inn‘?lh Inn}<exp{—(h(7/,5)—5)lnn} (3.13)
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is hold for each &< (0;h(y,5)—1) and all n>ny(&). Since h(y,6)—e>1, then it
follows that the series (3.1) is absolutely convergent at the point S=o¢  that is

Oy 2 Yoy —0 . For ag=—o this inequality is obvious.

Let, finally, o >—o and 7 €(—0;0;). Since the series (3.1) converges at the

point 77, then there exists M >0, such that for all n>0

la,|exp(74,) <M,

anlexp{(77-5) 2} = (laalexp{nan} ) [anl " exp{-oiy} <

(7 =1)In|a,|+ 4,
Inn

£M7exp{— Inn}<exp{—(h(7/,5)—5)lnn}

for each &<(0;h(y,5)-1) and all n>ny(&). Then it follows, as from (1.13), that

0,2yn—0 and due to the arbitrariness of 77, Oy Z;/ag—& For o =— this

inequality is obvious. The theorem is proved.

Let's denote

def
79 = lim iInn : (3.14)

N—o0
Corollary 3.1. For each Dirichlet series (3.1) the inequalities 03 <0 <03 +7
and oy <ap <oy + 7 are hold.

In fact, let in the Theorem 3.1 y =1 and 0 =7y +¢,&>0. Then

h(y,6)= lim Coro)h _n+e
oo NN 0

and, therefore, the estimates 03 2@y —7p — ¢ and 03 20, — 7 — ¢ are correct, that is,

taking into account arbitrariness of &, we have 03 2@y —7p and 03 20— 7.
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The examples of series (3.9) and (3.10) indicate that these estimates are exact.
For the first of these series we get that 7o =1, a9 =0, =0,04 =-1 and for the second
series we have 7o =y =0 =+%,03 =—
Corollary 3.2. If
Infa,|

lim
n—wo 1NN

then oy > y(hg +1)/hy and oy Zag(hg +1)/ hg.

=hy >0,

In fact, let in the Theorem 3.1 6 =0, y =1+&+1/hy. Then

h(7.6)= "_m[i+8] >14ehy >1

and, hence, o, >(1+&+1/hy)o, and o, >(1+&+1/hy)ap, due to the arbitrariness

of &, we get the necessary inequalities.

Example of a series

1+Z )" nexp(sinn)

indicates the exactness of the 2 mentioned estimates in the corollary, where

hO :1, (ZO :GQ:—].,Ga :—2.

Corollory 3. 3. If

Inn
nl—r>go|n(1/|a ) =ho<[01),

thenand o, >0 (1-hy) and oy > (1-hy).

In fact, if in the Theorem 1.3 we take s=0 and y =1-hy —&,0< & <1-hy, then

(7.6)= lim (ho+&)In(1/[ay]) o+
N—>o0 Inn hy

>1

and, consequently, o, >0 (1-hy—s) and oy >ap(1-hy—¢), then due to the
arbitrariness of & we get the necessary inequalities.
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The example of the series
1+ Z —exp (slnn)

indicates the exactness of the 2 mentioned estimates in the corollary. Here
ho :1/2, Qp :O-Q :2, O3 :1.
Using the Corollaries of 3.1-3.3, we will prove such a theorem.

Theorem 3.3. Let 70 =0 or Inn=o0(Ina,|),n—>. Then oy =0 = .

Proof. If 75=0, then the conclusion of the theorem follows from the
Corollary 3.1. If Inn :o(ln\an\), n — oo, then either 1) In|a, |/ In n— 0 (n — ), or
2)In[Ll/a,|/Inn—+w0(n—>c0), or {a,}={a;} J{as}, where {a;} satisfies the
condition 1), and {a} satisfies the condition 2). In the first two cases, the correctness

of the theorem follows from the corollaries 3.2 and 3.3. In the third case, we’ll write

the series (3.1) in the form of the sum
ay+ Z alesh + Z ales (3.15)

where A, and A; correspond to the coefficients a, and &. By the colloraries 3.2 and

3.3, we have

1.1 1,1
! ! ' " " "
oc=03=qp=lIm—In—= " ogl=0y=05= lim —In—

"o
N—o0 an nN—o0 an

where G'Q,Jé and ag,ag are the abscissas of convergence and the absolute
convergence of the corresponding series from (3.15). Note also, that

=min{ot, o }.

oy =min{o;,03}, a 0G0

9
It follows that
< M ! 1 _ T !/ 1" _
ao_mln{aa,ao}—mln{O'a,O'a}—O'aSao
and
<m|n{a' 0'"}=0 <o
O¢> a'Ya a—=Y¢-

The Theorem 3.3 is completely proved.
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Analogues of Cauchy’s inequality

If the function f is given by the power series (3.2) and is analytical in the circle

{z:|z|<R}, then, as it is known from the general course of Complex Analysis,
la,|r" <M (r) forall n>0 and 0<r<R, M¢(r)= ﬂ H|_r}

Let the Dirichlet series (3.1) has an absolute abscissa o, €(—o0;+x] of
convergence. For o <o, we denote
M (o) =M (o,F)=sup{|F(c+it):teR}.
Theorem 3.4. For all N Z, and o < 0, the inequality
aufexp(o7n) <M (o, F)

is hold.

Proof. This inequality easily follows from the such true equality forall Ne Z_

and 0 <0y

T

2,6 = lim = = F(o+ite ™t (3.16)
TowT K

Let's prove this equality. We have

T T o
1 .\ —(o+it)4 1 (o+it) 2y g~(+it)4,
— | F(o+it)e dt=— [ Y apel "dt =
7| xlZ

1 ¢ [0 it)(4,~4,) it)(2—4)
_ = a+| O'+I

= J{Z dt+a + Z a, el dt}

T lm=0 m=n+1

The last series is uniformly convergent relatively to t € R, it can be integrated term by

term and therefore, using the relations

T ] . .
i ex(o-+|t)dt :_i(ele _e—le ) 0, (T —)+oo), X =0
T o IXT
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we get

T . .
im = [ F(o+ite " Vodt=a,

To+0 2T

That is, we obtain the equality (3.16).

Let’s denote
B(c)=B(0,F)=sup{ReF(c+it):teR}, 0 <0, .
Theorem 3.5. For all ne Nand o <o, the inequality
|an|exp(o4,) <2B(o,F)-2Req,

IS true.

Proof. Consider the Dirichlet series
Fi(s)=B(og)-ay - Zane“n => b.e%
n=1 n=0

where O is an arbitrary number, oy <o,. Then for each 0 <o,

T

b,e” = _lim 1 Fl(a+it)e“”ndt=
T+
-T
1 T it 1 T it
= lim — | P(oc+ite"dt +i lim — +ite Mt
To+0 2T % (G )e T+ 2 _‘[ Q(G )e ’

where P =ReF, and Q =ImF. On the other hand, for n>1 and o <o,

1} - 1} -
lim — [ P(c+ite ™ dt+i_lim — [ Q(o+it " dt=
-7

To+0 2T s To+0 2T
T

T |
= lim ij Y beeth A gt =
T—o+0 2T "1 k=0

ol O a0 1 iT(A+4) _ aiT(A+4))
TI—IH-]ookZ:;‘)bke iT(zﬂmk)(e © ) 0,

whence
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1 T _ 1 T )
lim — [ P(o+ite™dt—i_lim — [ Q(o+it Hdt=0.

T+ 2T T To40 2T

Therefore, for all o <o,

.
b.e” =2 lim 1 P(o+ite "t

T—+0 2T

Since ReF (o +it)<B(oy,F), then P(oy +it)>0. So,
1T
bye®* <2 lim = [ P(op +it)dt=

T—o+0 2T T

= 2Reby =2Re(B(oy, F)-ay) = 2B(09, F ) - 2Reay.
Let's return to (3.2) and denote
By ()=max|Re f re"): 0 [0;27]}, 0< <R
If z=e° (consequently, r=e?), then by the Theorem 3.5 we easily obtain the
inequality

ja,|r" sz(Bf (r)—ReaO) (n>1,0<r<R).

Three-lines theorem

Firstly, we will prove one theorem of Phragmen-Lindel6f type.

Theorem 3.6. If the function F is analytical and bounded in the closed strip,
{s:alsResgaz} and the inequalities ‘F(aj +it)‘SGe(O;+oo) are hold on the
lines {s:ResSaj},jzl,Z ,then F(s)<G forall S,01<Res<a,.

Proof. Let’s consider the analytical function in this strip
g(s)=F(s)e**’,&>0.

Then
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la(s)| :‘F(s)exp{g(g2 24 2ita)}‘ =|F (s)\exp{g(g2 _tZ)} @1
whence it follows that on the lines {S :Res< Jj}(j =1,2) the inequalities

lg(s) gGexp{g(aJ?)} SGexp{g(ag)}, ol = max{af;ag}
are hold.

From (3.17) and the boundness of the function F it follows that
‘g(s)‘zo(exp(—gtz))
when S —> 0 in the strip {s:0; <Res<o,}. Therefore, there exists the number

ty >0, such that inequality
9o +it) SGexp{gajZ} (3.18)
is true when [t| >ty >0 and 01<0 <0,

This  inequality is correct at the edge of the rectangle

{s=o+it:|t|<ty,c; <o <o,} and, therefore, in this rectangle and in the strip

{s rop<Res< 02}. From (3.17) and (3.18) for each S from this strip we obtain
F(s)| =|g(s)|eg(t2_“2) <Ge?l "),
Then, due to the arbitrariness of &, we get the inequality \F(s)\gG for each

S,01<Res<o,. The Theorem 3.6 is proved.

The Theorem 3.7 is called the three-lines theorem and it is the generalization of

Hadamard’s three-circles for the entire functions.
Theorem 3.7. Let 0150, <03. If F is the analytical function in the strip
{s rop<Res< 03}, is bounded in it and doesn 't equal zero, then
M(05)7 7 <M (01) 2 M(03)™ ™, M(o)=M(o,F). (3.19)
Proof. Let « € R. Then the function ¢(s)=e*°F(s) is analytical and bounded
in the strip {s: 0y <Res<o3}. At the edge of the strip the inequalities
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lo(s)| <M (oj)e™ 1, j=13

are hold.

Therefore, by the Theorem 3.6 for 07 <Res <oy

lo(s)| < max{e“"lM (01),e%7*M (03)},

e%2M (0,) < max{ewlM (01),€%7:M (03)}.

Let's choose & so that

e“” 1M (o1)=€e""*M (o3),

1 M (61)
o3—0p M (0'3) '

Then from the last inequality we get

[Mj02/(6301) M (o) <[ v (Gl)]%/(%al) M (1),

M (o3)

whence we easily get the inequality (3.19).

Corollary 3.4. Let the Dirichlet series (3.1) have the abscissa o, €[-%;+») of

convergence. Then the function InM (o,F) is convex on (—oo;oa) , hence, it is continuous

and has continuous derivative except, possibly, the countable number of points, in
which there exists the one-sided derivatives, moreover the left-sided derivative dos not

exceed the right-sided derivative.

Indeed, since the series (3.1) converges absolutely in {S ‘Res < aa} , then its sum
F is analytical and bounded in each vertical strip from this half-plane, and by the
Theorem 3.7 for each three numbers —© <0y <0y <03<0, , the inequality (3.19) is

true, from which the inequality

(o3—01)InM(0,)<(03—-0%)INM (07) + (0, —07)INM (03)
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follows. So, |nM(0,F) is the convex function. The rest of the conclusions of the

corollary follow from the convexity.

From the Theorem 3.7, using a replacement z =¢e> (hence, r =e°), we easily
get the correctness of such a corollary.

Corollary 3.5 (Hadamar's three-circle theorem). Let the power series (3.2)

have a convergence radius R €(0;+o0]. Then for 0< K <r, <r; <R
|\/|f (rz)ln L—Inr, < |\/|f (rl)ln rL—Inr, I\/If (r3)ln rL=Inr, .

It follows that the function |n|\/|f(r) Is convex according the logarithm

(logarithmically convex).

Maximum term and central index

Let the Dirichlet series (3.1) have the convergence abscissa o, €(—o0;+].

Then for each o <o, we have |a,|exp(o4,)—0(n— o) and therefore there exists

the maximum term
u(0)=p(o,F)=max{a,|exp(c,):n =0}
of the series (3.1). The value
v(0)=v(o,F)=max{n fag|exp(oA) = (o)}
is called the central index of the series (3.1), and /Iv(a) is its central indicator. The
functions v (o) and A(») @' piecawise-constant on (—o0;0,), moreover v(o) is

only integers.

Remark. The definition shows that the maximum term and the central index can
be defined for any sequence (a,exp(o4,)) that tends to 0, when N — oo for each
S,Res <A, where A is a certain number from (—oo;+o0].

Let h>0 be an arbitrary number. Then
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u(o+h)= ‘av(ﬁh) exp{(a+h) (G+h)} ‘av(a)‘exp{ o+h)4, }

= |20 |eXP{ o) [ XD {NA ) | = se(0)exp (A o

i.e.
Inu(o+ h)—ln,u(a)zhitv(a). (3.20)
Similarly,
,u(O'):‘ )‘exp{aft } ‘av(ﬁh) exp{o/’t (ﬁh)}
- ‘a‘/(ﬁh) exp{(o- + h)lv(ﬁh)}exp{—hﬂv(mh)} =u(o+ h)exp{—hﬂv(ﬁh)} ,
i.e.

Ing(o+h)—Inu(o)< h}“v(aJrh) : (3.21)
From (3.20) and (3.21) we obtain
1
/IV(G) SE(In ,u(0+ h)— In ,u(a))S /1v(0+h)'
It follows that the functions V(O-)’;i’v(a) and In ,u(a) are non-decreasing. Our

considerations are correct if h<0. Therefore, if (o1,05) is the interval of constancy

of the functionv (o), then when h — 0 we receive

dinu(o)
do

=A

v(o)’
Since at each finite interval the function J,V(U) has a finite number of breakpoints,

we get the equality
In (o)~ Inu(og)= jz (3.22)

for all 00 <0 <o <0, . From (3.22) follows the convexity of the function In x(o)
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Suppose that the power series f Z a, 2", z= re'” has a convergence radius
n=0

Re(0;+x). Then for each re[O;R) there exists the maximum term

wi (r)= max{\an\r“ n> 0} of this series. The value

vi(r)= max{n Han|r™ = u; (r)}
is called the central index of the series (3.2). If we make a replacement z =e® (hence,
r =€), then taking into account the correct equality in this case A(o) = v(o), from

(3.22) we easily get the equality

r
In 25 (1) —In ug (ro):J-VTt)dt, 0<rp<r<R,
r-0
Let's denote
Inja,|—Inja
Kn:Kn(F): | n| | n+l|
ﬂ’n+1 _ln
Theorem 3.8. If the sequence (Kn) IS non-decreasing, then

() =|an|exp(xy4, ) for all n. If &k, <k, for some n>1, then v(o)=n and
y(a):|an|exp(aﬂﬂ) for all O'E[Kn_l,l('n) and this N.
Proof. Let the sequence (&) be non-decreasing. If j<n, then

[aj|exp(xn ;) = |an|exp{ Z_ll (]~ Infag,1]) + ka4 )} _

m= ]

n-1
:|an|exp{ (i (Ams1 = Am ) + KA )} lan [exp (0 n ),

m=]

and if j>n, then

j-1
‘aj ‘exp(/cn ) |an|exp{ > ((In|am+1| - |n|am|)+ Ko )} _

m=n
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j-1
= |an|eXp{_ Z (Km (ﬂm+1 —Am ) + KnA| )} < |an|eXp(Kn/1n) ,

m=n

i.e. 1(xy) =|aq|exp(xniy ).
If K,_1 <K, forsome N and o € [Kn_l,Kn), then similarly for j<n we get
a;|exp(0%)
la,|exp(oy )

Sexp{/cn_l(/ln —2) =0 ( A — 4 )} :exp{—(a—/cn_l)(ﬂn —2; )} <1,

and for j>n

=exp{|n‘aj‘—In|an|—a(/1n -2 )}S

‘a- ‘exp(gﬁ.)
m < exp{—/cn (/11- —ﬂn)+0(ij —An)} <1.

So, v(o)=n and ,u((7)=|an|exp(aﬂn) for all GE[K‘n_l,Kn).
We will submit a geometric interpretation of the maximum term and the central

index using Newton's diagram. Let's construct this diagram first for the simple case,

where the Dirichlet series is reduced to an exponential polynomial

P(s):ao+§:anexp(sﬂﬂ), a, #0.

n=1

On the plane XOY we’ll note the points B, =(4,,—In|a,|). From the point Fy

we’ll draw a vertically down ray and rotate it around the point Py (counterclockwise)

until it touches the point with {Pn}n>1. Several such points may lie on the final

placement of the ray. The farthest point from Py we’ll denote by P, and the segment

[PO; Pnl] we’ll denote by . Now from the point P, in the direction of || we draw a
ray again, rotate it around P, to the touch with (P}, and the farthest point from

P,, from the final placement of this ray denote by B, , and denote the segment
[Pnl;Pnz] by l,. This process is finite and we will move on to the segment
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l, :[Pnk;PN]_ Finally, from the point Py we will draw a vertically up the ray | 4.

As a result, we will get a convex broken L, the links of which are the segments

Ij ,1< j<k and the ray l 4. It is called the Newton's diagram and has such a property

that none of the points P, lies below it.

Let's construct the Newton’s diagram for the Dirichlet series. Among the
coefficients d, may occur such that equals zero, but we think that it does not reduce to
the exponential polynomial. In fact, as the remark shows, we are constructing the

Newton’s diagram for a functional sequence (a,exp{s4,}). We think that a, # 0.

Let @ be determined by the equality (3.14) and o € (—oo;+oo]. By the Theorem

—Ina,|
3.3 ap =2 0,. Denote by ¢, the angel between rays y:TX and Y=0,x>0.

Then from (3.14) we receive

lim ¢, =arctg .
N—00

As above, let B, =(4,—Inja,|) (in the case, when &,=0, we think that

—In|an| =+00), and the ray 1’ with the beginning in P, rotates from the vertical down

the placement counterclockwise until one of three situations arises:

1) the ray 1’ will touches any point from {Pn}n>1, it has a finite number of points

P,, and all the rest points lie higher 1’;
2) on the ray 1’ the infinite number of points from {Pn}n>1 lies, and under it

there are no such points;

3) there are no points from {Pn}n>1 on 1’, but during the further rotation under

I’ will be the infinite number of such points.
In the cases 2) and 3) the process of constructing the Newton’s diagram is

completed and this final placement of the ray 1’ we denote by L. It is clear that the

angle of inclination of L is equal to arctg ;.
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In the first case, the most distant from the point P, the point P, from the final
placement 1’ we’ll denote by R, and let Ilz[Po;Pnl]. From the point B, as a

continuation of |, we will draw a ray 1”7 and turn it around P, again until one of the

situations described above arises. In the last two, the process is completed and by L

we will denote the broken, consisting of  and the final placement of the ray 1”. In the
first situation, the most distant from R, point P,,n>n, from the final placement 17,
we’ll denote by P, and letit I =| PP, |.

Continuing this process, we will construct a convex broken L, which will either

consist of the infinite number of edges |, such that the angle ¥, between |, and the

ray y:O(xzo) increases to arctgag, when N increases or consists of a finite

number of edges |, and a ray I that forms an angle arctg oy witharayy= O(x > O)

Let y= L(x) be the equation of this Newton’s diagram L. Then the Dirichlet

series

P (5) =0l + L e {-L(4n) 54} 629
n=1
is called the Newton's majorant of the Dirichlet series. The series (3.11) can be formal.

:—L(ﬁnj),jzo.

Suppose at first that Newton's diagram consists of a finite number of edges and

Itis clear, that In|a,|<-L(4,),n>0 and In

anj

draw a line | with an angular coefficient o <& so that it touches the broken L, but
does not cross it. This line | in common can have with L either one point P, or the
segment [R; P, .k =k(o),v=0(0o). Let's show that is v(c) is the central index of

the Dirichlet series and the series (3.23). Indeed, if m<uv(o), then
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I —1 L(A .\ |-L
n|am| n (0')‘ ( U(G)) (j“m) <o
Ao(o) ~ Am Ap(o) ™ Am
whence it follows the inequality
|am|exp(ody, ) < U(G)‘exp(a/l )). (3.24)

The same inequality is hold for Newton's majorant. If m > u(a) , then

—| L -L{A
au(a)‘ n|am| S (ﬂm) ( U(G)) o
ﬂ“m _ﬂu(a) ﬂ“m _ﬂ’u(a)

whence it again follows (3.24) and the corresponding analogue for Newton's majorants.

In

aU(G)‘eXp(o% (0)) is the maximum term

of the Dirichlet series, and eXp{L(ﬂU(U))+ 0/10(0)} is the maximum term of the series

(3.23). But In

au(a)‘ = —'—(%(a)) . Therefore, the series (3.1) and the series (3.24) have

the same maximum terms and central indixes.
Since the equation of the line | with the angular coefficient o, passing through

the poin PU(U)t IS

o)l

then, substituting x=0, we see that \In ,u(a)‘ Is a distance from the point of intersection

y:a(x—lu(d))—ln a

| with the axis x=0 to 0.

Let’s consider the case when Newton's diagram includes a ray [Py,0) with an
angular coefficient & . Its equation looks is y:aox—(ln|aN|+a0/1N). Therefore,
Inja,|<-L(4,)=Inlay|+(An — 4y ) for all n>N. It follows that for all
o<o,(<ap) andall n>N

lan|exp(o, ) =|ay [exp{(o - ag) 4y + apdy | < [an [exp(apdy ),
I. e. the maximum term is a bounded function.
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This cannot be said about the central index. For the series
> exp(sn)
n=0

we get o, =9 =0, (o) =1 and v(c)=0 forall & <0, and for the series

1+ Zexp(—£+ sn)

n=1 n
we have o, =ay =0, (o)=1 forall & <0, but

v(a)=%+0(1)—>+oo (6 —0).

. 1 : : .
In fact, the function g(x)=—=+ox,x>1 reaches its maximum at the point

x(o) =1/ Jlo] +Jv(¢) - x(o)| <1.

Estimates of the maximum modulus through the maximum term

From the Cauchy’s inequality (Theorem 3.4) it follows that (o, F)<M (o, F)
. Therefore, we need the estimates M (o, F) through x(o, F) from above.

Theorem 3.9. Let o, =A, 7 >0 be an arbitrary number, and &6 =A(y -1),
when A<-+oo, and §>0 be an arbitrary number, when A=+oo . If h(y,8)>1 (see

3.15), then for all o €(op; A)

o+0
Y

M (o)< K,u( jy, K =const . (3.25)

Proof. We can assume that all @, # 0 and for n>1 denote
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Then by the Theorem 3.3 lim r, =y > A. We accept q(X)=yx—35, if x< A<+,

N—>o0

and q(x)=yA-5=A,if x> A inthe case A<+oo. Then

oc+o0 A+06

1(5)= < - A
q (0) Y V4
for all O'e(—oo; A) and
F)< Z|an|exp(a/1n):
n=0
[ Z + Z +Z J\an\exp(aﬂﬂ)ﬂao\. (3.26)
rn<q'(o) q’(o)sr,<A r,=A

(if A=+o0, then there is no third term in (3.26)).

If r,<q'(c)= 90 then
v

v
g% :[|an|exp{in67+5}] exp{-o4, —yInja,|} <

gﬂ(aTwa exp{ﬂn(;/rn _5)}:u£07+5j7exp{/1nq(rn)}.
If q(c)<r,<A, then exp(od,)<exp(4,q(r,)). Finally, if A<-+oo, then

exp(o4, ) <exp(Al,) =exp(4,0(A))=exp(4,a(r,)). Therefore, from the inequality
(3.26) we obtain

M (0, F)S,u(o-;éjy Z |an|exp{ﬂnQ(rn)} +

r<q™(o)
> lanlexp{Za(m)}+ X lanlexp{2a ()} +ag).
q*(o)<r <A r>A
Due to the condition h(y,5)>1,

> fanloxp{ ()} = e \exp{ [L.%]}
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ij { (7 ~1)Inja,|+ 54, )}_ni;exp{_(y—l)ln\anhéﬂﬂ Inn}<+oo.

Inn

The Theorem 3.8. is proved.

— Inn
Corollary 3.6. If 0, =+ and lim —— =T <+ then for each ¢>0 and all
N—o0

o20y(€)
M (0) < ,u(a+ 70 +8). (3.27)

Indeed, let's take 0 =7y +&/2 and y =1. Then by the Theorem 3.9,

M (o)< K,u(0+70 +gj K =const >0 (3.28)
forall o>0y(¢). But
o+7,+E
& &
Inu(o+79+¢)—In ,u(0'+ Ty +Ej = _[ /zﬂv(t)dt = Eﬂ’v(o-) zK
o+T,tE

forall o>0,(¢), so from (3.28) we get (3.27).

Corollary 3.7. If 04 =+ and

n@o_'g(; < <hy <l (3.29)
then for any £ €(0,1-hy) and all o>0y(¢)
1-h,
M (o)< y[l_h;ﬁj | (3.30)

In fact, if we choose §=0 and 7 =1—hy — ¢, then by the Theorem 3.2

1-h,—¢
M(G)SK;:[H;%] , K=K(g)=const>0.

Since (o) —+w (o —>+o) for the entire Dirichlet series, then it follows

(3.30).
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Corollary 3.8. Let o, =+0, ® € Q(+0) and Inu(o,F)<®(o) for all ccR

. Let the function ¢ be inverse to ®' and the function ¥ be associated with ®p by

Newton. If
— Inn
lim < fy <1, 3.31
then for each ¢ €(0;1- /) and all o> 0y(¢)
1-4,
(o}
M (O‘) < ﬂ[m} . (3.32)

In fact, Inja,|<-2,%(¢(4,)) and from (3.31) follows (3.29), when hy=/p.

Therefore, from (3.30) follows (3.32).

Consider the case, when o, =0 (the general case 0, € R is reduced to the case
o, =0 of the replacement with S by S—0, ). In this case the maximum term can be
the bounded function on (—0;0).

In order that x(o,F)<K for all & <0, it is necessary and sufficient that
lay|<K forall n>0. |ndeed, if #(o,F)<K then |a,|<Kexp{-o4,} forall o <0
and n>0 Tending o T0, we get that lan|<K. Conversely, if |a,|<K, then
la,|exp{o,} <K forall <0 and n>0,i.e. u(o,F)<K.

In the case, when |a,|<K forall n>0, the estimate x(o,F)<K is as follows:

M(o,F)< i la,|exp (o4, ) <K i exp(ody,)
n=0 n=0

and depends only on the density of indicators. Therefore, we consider that

lim [a,|=+oo . (3.33)

N—>00

On the other hand, if o4 =0, then in the Theorem 3.9 we can take only §=0,

and therefore, if , >0 is an arbitrary number and
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lim w=h(7,0)>1, (3.34)

N—>o0 nn
then forall <0
oV
M(o,F)< Ky(—j , K=const>0. (3.35)
v
If 0<, <1, then (3.34) is hold only, when
— Inja
lim 2| <- L

n—w NN 1-y'

and this is possible from the point of view of (3.33). The condition (3.34) isn’t hold in
the case y =1. Therefore, there remains the case , >1. In order that the condition (3.34)

is hold, it is necessary that

lim —2i>0. (3.36)

Corollary 3.9. If o, =0 and the condition (3.36) is hold, then for each &>0
and all 0'6(0'0(8),0)

1+h,+&
o
M Ul ———
(G) ﬂ[1+ h0+gJ ' (3.37)

In fact, if we take 1+hy +&/2, then from (3.36) we will have h(2,0)>1, that

is, (3.34) is hold and hence, (3.35) is hold, wheny =1+hy+&/2. Since due to (3.33)
pu(o,F)7T +oo(o' T o) takes place, then from (3.35) follows (3.37).

Theorem 3.10. Let 03 =0 and the sequence satisfies the condition (4, )
— Inn
lim
N—a0 iny(ﬂﬂ )

<hy <+, (3.38)

where y is the positive continuous decreasing to 0 on [O;+oo) function, such that the

function ty(t) T -+oo (t — +o0). Then for each & > 0 there exists the constant K (&) >0

.such that forall <0
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M(G)Su(ﬁj exp gayl[ lo } +K(g).  (3.39)

1+¢ (1+g)2(h0+52)

Proof. Let n(t)=_, _1 is the counting function of the sequence (4, ) . Then

the condition (3.38) is equivalent to the condition

- Inn(t)

t—>+o0 t}/(t)

<hy <+o0

and, hence, for each £ >0, when t >ty =t (&) the inequality Inn(t)<hty(t)is correct,

where h=hy + £2. Taking the Stiltiés integral and integrating it by parts, we obtain

<><§'an'exp(ﬁn1i‘g)ex  ell)
Al A

< Som|-£ |- o £ Eljon) < £ o] -1

0 1+¢

(3.40)

where K;(g)=const>0. Since the function ™" is decreasing on (0:7(0)),

7 (x) T +eowhen x40, then

t(o)= 7/1[%} T oo, (0' ) O),

such that t(o)>ty, when o >oy(&). Since ty(t)is non-decreasing, than

t(o) 6‘|O‘| t(o)
Iexp{t[mhy(t)j t< [ exp{thy(t)jdt<t(o)exp{ht(c)y(t(c))}=

0 tO

110



o ol Vo[ el o el |
- (h(1+5)2J p{h(1+5)2y [h(ug)z}’ (341

ti)exp{t[(fﬁ) - h7(t)j}dt = tz)exp{t( (i‘i) - h}/(t(a))]}dt _

T el ol @) | Eoft(o)| _(1+e)”
t('!;) p{ (1+8)2t}dt 82|G| p{ (1+g)2 } 82|G|

(3.42)

and

From the inequalities (3.40)-(3.41), when o >0y(¢), we obtain

M(o) __elol a4 el || elol [ el )| 4o,
ﬂ(aj__l+87 [h(1+5)2} p{h(l+€)2y [h(1+5)2)} £ Ka(#).

l+¢

whence, due to the fact that xy(x) T +oo (x — ), i. €. |a|7_1(|0|)T+oo(aTO), we

get (3.39) with the constant K (&)> 1re +Ky(e).
&

Theorem 3.11. Let 6, =0, ® €Q(0) and In (o, F)<®(o) forall o <O0. If

— Inn
" 2 (2]

then for each &> 0 there exists K (&), such that for all o <0

M(o)éu(awxp{ﬂw[w{ o ]]}m(e).

< fp <+, (3.43)

1+ By +¢ 1+ By +¢
Proof. We have that |n|an|£—ﬂ,n‘1’(go(ﬂﬂ)), n>0 and from (3.43) it follows

that ﬂﬂ\lf(go(ﬂ,n))z Inn/(By+e12), when n>ny(&) and Inn(t)<(S +8)“P((o(t))‘

, when t>ty(&). Therefore, if we choose

y(a)zCD'(\Pl[ > Dmoo (¢10),

1+ Gy +¢
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then, when o> oy (&), we will have

M(a)<£ >+ D> ]|an|exp(o-ﬂﬂ)<

A, <7(0') A, 2}/(0‘)

<u(@)n(7(0)+ X exp{~An¥®(p(4n))+ Ay (4n)) <

inZQ/(O')

<u(o(r(o))+ 3 exp[-A¥(p(An))+ (Lt o) ¥ (o(4n))) =

n=n,(¢)

ulah(r(a)e 3 el s

Sy(a)exp{(ﬂ0+5)d)'[‘{’l( " D d }+K1(5),

1+ fg+e ) )1+ By +e

therefore, we get (3.44) with some constant K(&)>Ky(¢).

Growth of entire Dirichlet series

The most used characteristics of the growth of Dirichlet series is the R -order

pr= lim lInInM(a,F),

o>+ O

and R-type (when 0< pg <+m)

Tr= lim exp{-prc}InM (o, F).

>+
Theorem 3.12. If either Inn=0(4,In4,), or Inn—o(lnﬁ}, when N — oo,

then
pr = Tim 2ol (3.45)

a—>+oo—|n|an|’
and if Inn=0(4,), when N — o0, then
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TR - m A|an|pre//1n .

(3.46)
O —>+0 epR

Proof. Let O0<AB<+x and ®(c)=AeB?. Then @ eQ(+wx),

gp(x):%ln%,‘{’(a):a—%, and ‘P((p(x)):%lneALB. In  order that

Iny(a,F)SAeBG, when o©20p, it is necessary and sufficient, that

Inja,| < —ﬁlnﬁ, when N2y, It follows that
B eAB

def def
p= Tim Linny(o,F)=k = Tim 2"/

o>+0 0 o—+o —|n |an|

(3.47)

and

def __ def PrE ﬂn Pl A
BT _ — = Ip=lim —Lja "™
T GILn;\OOexp{ protinu(o,F)=x = IR a—>+ooepR| n| . (3.48)

For example, we’ll prove (3.48). If T <+oo, then Inu(o,F)< Aexp{pgo} for

each A>T and allo > oy (A). Therefore

Inja,|<-—In—"—, nxn, (3.49)

that is, x < A, due to arbitrariness of A, we get the inequality « <T, which is obvious

when T =-o0. Further, if K <+o0, then for each A> « and for all n>ny(A) (3.49) is
hold, therefore Inu(o,F)< Aexp{pgro} for all o>0y(A), thatis, T <A, Due to

arbitrariness of A, we get the inequality T <, which is obvious if x=+00 . So,
T =«.

The proof of the equality (3.47) is similar.

If Inn =0(ﬁn), when N —> o0 then by the Corollary 3.6 from the Theorem 3.9

and by the Cauchy’s inequality we get 1(o)<M (o)< u(o+¢) for each >0 and

all o>0y(¢). Therefore
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nu(o+e)
T<Ts< lim —/——~/7
RS e exp{opg | Xplara).

whence, taking into account the arbitrariness of £, we have the equality T =Tg, and
from (3.48) follows (3.46).

Suppose now, thatp <-+ow. Then for each B>, and all o>04(B) the
inequality Inu(o)<®(o)=exp{B,} is hold and from the condition
Inn=0(4,In4,)(n—> ) it follows that

— ninn — Blnn
lim =

= | =
N—>+00 ﬂnCD((p(ﬂﬂ)) n—lmooln In(in /eB)

o)
Therefore, by the Corollary 3.8 from the Theorem 3.9 #(0)<M (o)< ﬂ(l g] for
each £>0 and all >0y (¢). By the Corollary 3.7 of this theorem, the same inequality

is hold, when Inn= o(ln ! J , N—00, and from it follows the equality o =p,

an|

which together with (3.47) gives (3.45). The theorem is proved.

For the entire function f ( Za z" let M¢ (r) max{‘f )iz |—r}
n=0
The values
= fim InM (1)
O —>+0 Inr

and

T InM (r)

, O<p<mo,
oc>+0 P

are called the order and type of the function f accordingly.

Corollary 3.10 (Hadamar's theorem). The order and type of the entire function

are calculated by the formulas

— nlnn
o= lim
n—>+oo—|n|a |’
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and

T=lim fa,|”".
n—+wo €0

Let's retutn to the Dirichlet's series. The values

o —>+0© Inc o —>+©

are called the logarithmic R-order and R-type respectively. It's easy to see that for
each entire Dirichlet series Pg 21. Therefore, in the definition of Qg it is enough to
require that Pr <+o0.

— Inlnn

Theorem 3.13. Ifeither lim ——<1 or lim <1 then
n—>+o0 INA, n—>+oo—ln|an|
e In
pr= TIm — 41, (3.50)

O —>+00 1 1
In(ln]
o lan]

_ 1
and if 1< pg <00 and either Inn:o(/?,n'DR/(IOR 1)), or Inn:o(lnm},when n— oo
n

,then

l_pR
_ — 1
dr =( PR —1)IOR 1pRIOR lim ﬂ,np{ln—] . (3.51)

Proof. Let’s choose the function ® e Q(+w), such that @ ()= Ac® for all

sufficiently large o, where Aand B are positive constants and B>1. Then

o0-(5] . we)-Bte

ot} no-1( 25"

for all sufficiently large x. In order that In (o)< Ac® (o> ay), it is necessary and

sufficient that
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(n=ng).

B/(B-1)
Inja,| S—A(B—l)(%j

Using the same method as when proving the Theorem 3.11, we obtain

def ___ Inl F —
o fim Mnu(eF) G Ind, (3.52)
O —>+® Ino O —>+® 1 1
In(lnj
Ao |

and if p>1

def _ . =p
q= lim o-"olny(o—,F):(p—1)'°_1pIO lim inp[lnij . (3.53)

o—>+w© N—>+00 \an ‘

Suppose now that p < +co. Then Inu(o)<®(o)=0o" for each B>p and all
sufficiently large o . From the condition

lim (Ininn/In4,)<1

N—>-+00

it follows that Inn= 0(1%*“), n— oo, for each « > 0. Therefore

Inn=0,

1+1/(B-1)

- Inn - 1 B
lim = lim —| —

N—>+o0 ﬂ,n‘P(¢(/'Ln)) n—>+o B -1\ 4,

and, using the Cauchy’s inequality and the Corollary 3.8 from the Theorem 3.9, as

when proving the Theorem 3.11, we get the equality Pgr = P. From (3.52) it follows

(3.50). If the condition

fim [Inn/in—= |<1

N—>+o00 \an\
Is hold, it is enough instead of the Collorary 3.8 to use the Corollary 3.7 from the
Theorem 3.9.

The proof of equality = Pg is similar.

The most flexible growth scale of entire Dirichlet series is characterized by the

generalized orders. Denote by L the class of continuous non-decreasing functions «,

such that a(x)>0, when X=Xy, a(Xx)=a(Xy), when X<Xy and the function «
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increases to +0  on [Xg;+o0). We’ll say that ael® if aelL and
a(x(1+o(1))):(1+0(1))a(x), when X —-+oo further a€ly, if ael and
a(cx)=(1+0(1))a(x), when Xx—>+o; finally a€lge, if ael and
a(xa(x))=(1+0(1))a(x), when X —+oo. It's easy to see that Ly, c Ly <L’
Functions L-,-g are called the slow-growing, and from LC-,-Q are called very slow-

growing.

Let ¢ L, feL, G be any function defined on [ao;+oo). The value

Paﬁ(G)=G@®%

is called the generalized order of the function G . If we take G(o’)=InM (o, F), then
we obtain the definition of the generalized order p,;(G)=p,s(INM) of entire

Dirichlet series.

Denote
Kaﬁ(F): lim a(ﬂﬂ) '
n—)—i—ooﬂ ilni
2 |ay]

Imposing certain restrictions on the functions & and g, we can find the

conditions for 4, or &, under which p,;(F )=,z (F).

Theorem 3.14. Let a € L and L e L% such that for each pE (0;+oo)

- l < _1
lim al | a " (pp(t))dt |<p | 3.54
O —>+00 (O‘) C;'.o ( ( )) ( )

(1 1
where Oy is the number larger, than /3 1(—a(xo)j. If either Inn =o(lnm], n— o0
P n

, or for each p e(0;+00) and some ty > a_l(Pﬂ(Xo))
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|nn=oﬁnﬂ‘1(ia(t))dt} n—ow, (3.55)

Proof. Let pus(F)<+o. Then InM(o,F)<a *(pB(c)) for each
p>p,s(F) and all o>0y(p). Therefore, by the Cauchy’s inequality

Inja,|<a(pB(c))-04, for all  n=0 and o=0p(p). When

azﬂl(%a(ﬂn)} n>ny(p), hence

In|an|sﬂn—ﬂnﬂ‘1(%a(ﬂn)j,

Since e L® and o Is an arbitrary number, then from the last inequality we get the

inequality k5 (F )< p,5(F), which is obvious if p,;(F)=-+wo.

Suppose  K,5(F)# p,5(F). Then K,z(F)<p,s(F). If we take

(1
kop(F)<p<p,s(F), then given the growth of the function S 1(;a(x)) for

n>ny(p), we’ll get

(1 ¢ (1
In|a,| <-4, (;a(ﬂn)jg j,B 1(—oc(t)jduconst . (3.56)

t, P

Note that if ® € Q(A) and for o €[oy; A)

D(o)= Tw(t)dt+const, (3.57)

Oy
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where @ is positive, continuous and increasing to +oo function on [og;A), then
(p(X)zW_l(X)’ when X2 X, , and since (X‘P((p(x)))' :(X¢(x)—q)((p(x)))l :(p(x),

then

X¥(o(x))= Ta)‘l(t)dt+const. (3.58)
%

In order that for all o €[oy; A)

Inu(o,F)= jw(t)dt+const,
Oy

it necessary and sufficient, that
A,
Inja, |< —j o *(t)dt + const .

XO
Using this statement, from (3.56) we get the inequality
Inu(o,F)< ja‘l(pﬂ(t))dt +const,
Oy
whence, due to the conditions « € L and (3.54), we get the inequality p,5 (In )< p.

(1
Finally, given (3.36) with o(x)=/ 1(—05(X)j, the condition (3.55) is equivalent to
P

the condition (3.36) 5 o=0. By the Collorary 3.8 from the Theorem 3.9
InM (o, F)<Ing((1+0(1))o,F), o —>+o. (3.59)

The relation (3.59) by the Collorary 3.7 from the Theorem 3.9 is hold also if

1
Innzo(lnm}n—wo. From it, by the condition ,BeLO, the inequality
n

Pop(F)<pup(Inu)<p  follows, which is impossible. The equality

Pop (F)=kys(F) is proved.

Remark 1. Since
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]{ a_l(pﬂ(t))dt < Ja_l(pﬂ(a)) +const,

Oy

then the condition (3.54) takes place, if @ € Lc-l-g.

(i

Rematk 2. If @ €L;. and £ =0(1), when x—+oo for each

dInx

p €(0;+0) , then (3.54) is hold and (3.55) can be replaced by a condition

Inn =0[2ﬂﬁ1(%a(ﬂn)n, n— o, (3.60)
a_l(px)

a_l((p+g)x) — 0, when X—> 40, >0, because

Indeed, since a € |—'|'g, then

a_l(pxk)

if a_l((p+g)xk)

>h>0 for some increasing to +o sequence (X, ), then we would

have pX Za(ha_l((p+8)xk)):(l+ 0(1))(p+&) %, k —> oo, that is impossible.

i

Yo,
dlInx

Further, the condition =0(1), when X — +o is an equivalent

din a_l(pﬂ(x))
dx

to the condition >C>0, X=X, and therefore for each & >0 we have

T a_l(pﬂ(t))dt

Oy

lim : < Tim 0‘_1(/":3(0))
e (o2 A() T 1 (s (o)

i« pr)p(e) o a{ep(o)
T a ((p ) pe))) T (PO

<

—_

<




It follows that

[ (pp(0)at<a((p+2)5(<))

Oy

for each £>0and all o> oy(&). Therefore, the condition (3. 54) is hold.

Further,
jﬂlcja(t)}ﬂ ﬁ_l(ia(x)j

g e -
xﬂ_l[pa(X)) ﬂ_l(;a(x)j+ x[ﬂ_l(/l)a(x)n

whence the equivalence of the conditions (3.60) and (3.55) follows.

Growth of Dirichlet series, absolutely convergent in the half-plane

Let the Dirichlet series (3.1) now have a zero abscissa of absolute convergence.

By R-order and R-type of such Dirichlet series will’11 call
pg = lim |a||n|n M (a, F)
—0
and

o—0 |O'|

- 0
TS = lim exp{—&}lnl\/l (o,F), 0<pp<+m,

and the logarithmic R-order and R-type we’ll call

pg:mlnlnM(a,F)
o—0 In(1/|a|)
and
q = Tim [o]™ InM (o, F), 0< p <-+oo.
—0

The logarithmic R-order and R-type are often called simply as order and type.
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Theorem 3.15. If either lim (Infa,|/Inn)>0, or Inlnn=o0(In4,),n— oo,

N—>+o0

then

o0 = fim — g (3.61)

O —>+00 In jﬂ ’
[In\an\j

O /(p° +1
and if either |nn=0(inpR (pR+)j,n—ﬂﬁr,orIi_m(In\an\/Inn):+oo , then

n—o0

o2 =(0 o) ") ) @62

Proof. Choose @(o)= A|G|_B, where A and B are positive constants. Then

qDeQ(O),

B . .
In order that In u(o)< Alo| ~,(0>0 >0y), it is necessary and sufficient that

B+l AB 1/(B+1)
In|‘3‘n|S B A A (nZnO),

Using the same method as when proving the Theorem 3.12, we have

def _ _
00 = |im0'”|':‘l‘/(6":)= fm—%& g (3.63)
o—> ( ‘O‘D n—>oo|n[ ﬂ'n ]
Inja,|

and

def T p° 0 _(po+1) 0 P — 0 p°+1

q = lim|o] Iny(a,F):(p +1) (p ) lim 2,7 (Inja,])” . (3.64)
o—0

N—>+0c0
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If lim (In|an|/|n n)>o, then (3.36) is hold with hy <+ and by the Collorary 3.9

n—o0

from the Theorem 3.9 we have (3.37), whence given the Cauchy’s inequality easily

follows p°=pg. If lim (Inja,|/Inn)= o, then from the same corollary follows the
n—oo

equality q° =q2.

Further, if Inlnn=0(In4,),n— o0 , then

— Inn B ~U(B+1) 7 ,-B/(B+l), . _
lim = AB lim A, Inn=0,
n—)oo/'],n“P((p(ﬂn))‘ B+1( ) am

A . o pe /(P2 +1)
B >0. The same inequality is true, if B=p3 and INn=0| 4, N —>00,

Therefore, by the Theorem 2.4 for each ¢ >0 we receive

INM () <In y(a)+ﬂqy(w{li)j+ Ky(¢)=

1+¢ +é&
B+l ,-B By _|-B
=Inu(o)+eA(B+1)" "B (1+¢) o]~ +Ky(e), (3.65)

where Ky(¢) is the positive number. It follows that

Inin M (a)smax{lnlny(a),B*lnﬁ}+O(l), o—0,

where B is arbitrary number, B” > p°. From the last relations and Cauchy’s
inequality, due to the arbitrariness of B*, it easily follows that pg = p?, and therefore
from (3.63) we get (3.61). If we take B = p2 = p° and A>q°, then from (3.65) we’ll

get g2 <q° + £A, that is, due to the arbitrariness of £ and the inequality q° <q3, the

equality qg =q° takes place. Therefore, from (3.64) we get (3.62). Theorem 3.15 is

proved.

For the analytic in the circle {z:|z|<1} function f(z)= ) a,z" the values
n=0
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— InInM
p= lim R A, r (1)
o —>+00 —In(l—r)
and

g= lim (1-r)’InM;(r), O<p<ow

o>+
are called the order and type accordingly. From the Theorem 2.8 such a corollary easily
follows.

Corollary 3.11. The order and type of analytic in the circle function are calculated
by the formulas

N—+c0 n
In
(In|an|]

and
q=(p+1)" " (p) fim 0P (infay])""
Theorem 3.16. If either Inn=0(4, /In4,),n—c0, or Inn=0(In|a,|), n — oo
, then
PR =n@%lnﬁn-

Theorem 3.17. If Inn(t)=0(Int),t— +oo, then

im I ‘ n‘ ﬂ'n 1
O_ 0 0 ’ O_ I nia I _ .
IR pRexp{K 1} K n'»oo[PRo‘a n(l ﬂn)z Jﬂn

At the end of this chapter, we’ll give two theorems about the generalized orders

of completely converging in the half-plane Dirichlet series.
Let el, Bel. The value

Pap (F )=m“(';(“f ,(‘:DF)) (3.66)

is called the generalized order of the Dirichlet series absolutely convergent in the half-

plane.
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Theorema 3.18. Let the functions « € L and g € L satisfy the conditions

X

7 (pa(x)

T+oo, (xo(p)S X—>+oo) (3.67)

and

a[ﬂl(m(x))}(u o(1))a(x) (x—+x) (3.68)

for each p (0;+0). Let the Dirichlet series (3.1) has the abscissa 0, =0 of absolute
convergence. If either lim (Inja,|/Inn)>0, or
Nn—oo

a(ﬂn)w(ﬂ[ﬁjj, N

Inn

then

o8y (F) =K (F) = Tim —Un)
n—>+ooﬂ j,n
(In|an|]

The conditions (3.67) and (3.68) satisfy, for example, the functions
a(x)=InInx and S(x)=Inx.

Theorem 3.19. Let the functions « € L and p € L for each pe(0;+oo) satisfy

the conditions

mhoo, (% (p)<x—>+0) (3.69)
and
'B(a1(,0,3(X))J_(1+0(1))ﬂ(x) (X —>+00) (3.70)

and the Dirichlet series (3.1) has an abscissa 0, =0 of absolute convergence. If either

lim (Inja,|/Inn)>0, or a(Inn)=0(B(4,)),n—> , then

N—»00
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def ___ (Inja,
sip (P =)= i <L)

Conditions (3.69) and (3.70) satisfy, for example, the functions «(x)=Inx and

B(x)=Inlnx.

Convergence classes
We will get a connection between the growth of the maximum modulus and the
behavior of the coefficients in terms of convergence classes.
Hardy's inequality

Let P>1, g=p/(p-1) and f be the positive function on (A;B),
—0< A<B<+4o0. Let (ﬂ:{) be the sequence of the positive numbers, (a,) be the

sequence of the numbers from (A;B). Then

def ,* o
_ Al (o),

*

ﬂf+...+ﬂn

The well-known Hardy’s inequality we’ll get from such a theorem.

Ay

Theorem 3.20. If the function f¥P is convex on (A;B), and the sequence ()

IS positive and non-increasing, then for each o <+o0
& * @ *
Zﬂnﬂ'nf(ph)gqulunﬁ’nf(an) : (3.71)
n=1 n=1

Proof. Denote t =4, +---+A,,n>1. Then

An :ﬂial +--- +ﬂ«n_1an_1 + ﬂ’na'l’] — tn—l A’l—l +&an
ty ty t b
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ot y . .
Since n—‘1+tﬁ =1, and the function fYP is convex, then
n n

*

fl/p(An)Stn_—lfllp(ph_l)Jrﬁfl/p(an),

ty ty

whence
t t
_fllp(an)gn_;lfllp(Ah_l)__n*fllp(A]).
n n
So, taking into account the equality 1/ p+1/q=1, we have

Q= AT (A) -0 1P (3) 1P () <
<1 (A0 B2 PR () PR () -
=20 (An)—atn f (A)+aty F79(A) PP (A )=
= (A —ata) F(A)+ataa f/9(A) PP (A). (BT

Let’s consider the function u(x) :lxp —ax+1aq on [0;+00), where @ is any
Y q

non negative number. This function has a unique minimal point x = x(a)= a/(Py),
and u(x(a))=0. It follows that for all a>0 and x>0 the inequality

Lyr a0 ax is true. Therefore, from (3.2) we have Q =—(q-1)4, f (4) and

P q

Qn S(ﬂ;—qtn) f (A])Jrqtn_l[% f (An_1)+% f (An)j:

:(ﬂﬁ +tn_1—qtn) f (An)+%tn_1f (Arq)=

1

=(1-q)t,f (Ah)"'%tn—lf ('Ah—l):p—_l(tn—lf (Av1)-t.f(A)), n=2,

and since the sequence £, is non-increasing, then when N < +oo
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N N
> Q0 <5 2 (s (Art) =t (A1) + 4@ =
n=1 n=2

N-1
:ﬁ-z(ﬂn _:un—l)tnf(Aﬂ)_’uNtN f (AN)<O
n=2
is hold.

By the definition Q,, and the Holder's inequality

we get

N N
Y tinda (A SAY e TP (a0) FH9(A) =
n=1 n=1

RPN A PRSTN) LOR ) PEITISI B JRRTOS]

1/q

If we divide the inequality by the last multiplier and raise it to the power p, we’ll get

the inequality (3.71) for @ =N, and due to the arbitrariness of N, the inequality (3.71)

is proved for all @ .

Corollary 3.12. Letp>1a,20 and A, :%(a1+---an)>0. Then

P w

Sve(sh)

n=1

(3.73)

The inequality (3.73) is called the Hardy's equality and follows from (3.71), if

An =1, gy =1(n=1)and f (x)=xP.

Dirichlet series of finite R-order or finite logarithmic R-order
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0

Let the entire function f, represented by the series f Z L z=re'?

have the finite order o >0 and M (r)= max{‘ f (z)‘ 2| = r} . The function f belongs

to the convergence class, if
j—r pxe] dr <+ (3.74)
1

In 1923 G. Valiron proved that if f belongs to the convergence class, then

Y Jag "™ < 0. (3.75)
n=1

The analogue of the ratio (3.74) for the entire Dirichlet series of the finite R-order
Pr > 0 is the ratio
CInM (o, F
J.#d6<+oo . (3.76)
) exp( o)

In order to find the conditions for the coefficients of Dirichlet series, at which

the ratio (3.76) and its analogues for the Dirichlet series, completely convergent in the

half-plane {S:Res<0}, both the finite R-order and the finite logarithmic R-order,

are hold, we first prove such a theorem.

Theorem 3.21. Let the series (3.1) have the abscissa o, =y = A e (—o0;+o0]
of absolute convergence, where; is defined by the equality (3.14). Let u(o,F) be

its maximum term, and aj are the coefficients of Newton's majorant. Let s be the

positive continuous non-decreasing function on [a, A), such that integrals

J~ do J- oldo (3.77)

2 B(o) 5 B(o) |
are convergent. Then, in order that

j4da <+, (3.78)
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It is necessary and sufficient that

i (4n _ﬂ“nl)B£%lna_]b]<+oo, (3.79)

n=n, n

where

Proof. The Dirichlet series (3.1) and its Newton’s majorant (3.11) have the same
maximum terms v(o)=v(o,F)=v(o,F;) and the central indexes
p(o)=u(o,F)=u(o,F)and |a,|<al forall Nn.

Suppose first that the Newton's diagram of the series (3.1) consists of the infinite

number of edges. From the construction of the Newton’s diagram, it is clear that the

angular coefficients of these edges are

o(r )-8 nay L) ~Ln)
a ﬂ'n+1_ﬂ'n /1n+1_ﬁn

Since 0, =g =A, the sequence(/cr?) increases to A. Without lost the generality, we

1 1
can assume that a; = a8 =1. Then Kg = |n—0 and again without lost the generality,

&
we can assume that Kg > a, because otherwise we can properly presesce the function

3. Using the equality (3.10), we have

ALA A
= 20 ! mdt +const = £ A (Bu(t)dt +const,

a

where

do

:Bl(t): (0)

:—r'—.>
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Is decreasing to 0 function. By the Theorem 3.8 it follows, that

flﬂ(( ))da Z_:lﬂnjﬂl t)dt + const =

=§%(B(Kg 1)~ B(7)) + const - Zﬂﬂ In-1)B (K1) +const,  (3.80)

where
B(x):‘){ﬁ‘l(t)dt ﬂ d(z)dt :J;ﬁd(i)iidt :i%da

_3/2 [ fﬂl dt,b’l ﬁl(x)}z

1 B-3/2(
278 { ) -[AM)A dt_Eﬂl (X)]ZO,

because f(x)=—1/B(x) is the decreasing function. So, the function BY2 is convex

on [a;A).
Further
Ina _InaO Ina_1+ +Ina1 Ina0+lna0_
Z—Kn—1(ﬂn—ﬂn—l)_"'—’fo(ﬂrﬂo),
I.e.
1 1 K‘O/11+ +Kn_1ﬂﬂ
ﬂfn ag ﬂ.1+ +/1: J /1n ﬂ'n ﬂ”nl (3-81)
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Therefore, by the Theorem 3.1, f (x)=B(x), p=2 and #,=1n2>1 we obtain

- 10y |25 a0 o).

1,1 ) _ . :
On the other hand —In—o < K‘r?_l and since the function B is descreasing, then
n

Therefore, from (3.80) it follows that (3.78) is hold if and only if (3.79) is hold. The
Theorem 3.21 in the case of the infinite number of edges in Newton's majorante is

proved.

Suppose that the diagram includes the ray [PN ;oo), of course, with an angular

coefficient &y = A. Then, on the one hand, the maximum term is bounded and, due to

(3.77), (3.78) is hold, and on the other hand, and (3.79) is hold. The Theorem 3.21 is
completly proved.

Using the connections between the maximum modulus and the maximum term,

we can find the conditions for the sequence (ﬁn) under which in (3.78) we can put
In (o) instead of INM (o).

Corollary 3.13. Let the entire Dirichlet series (3.1) have the finite R-order
Pr >0 and Inn=0(4,), when N —>oo0. Then, in order that the relation (3.76) to hold,
it is necessary and in the case, when the sequence(zcn(F)) IS nondecreasing it is

sufficient, that

0

D (A = nlan ' <o, (3.82)
n=1

Indeed, it follows from the condition Inn=0(4,)(n—«) that 7o <+, and

by the Corollary 3.6 from the Theorem 3.9, the inequality (3.32) takes place. From
(3.32) and the Cauchy’s inequality follow, that (3.76) is hold if and only if
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2InM (o, F)
J—d0'<+oo, (3.83)
2 exp(pro)

i. e (3.78)is hold with B(c)=exp{pro}. Inthis case

H :

? exp( pRG " phexpppx)

For entire Dirichlet series 0, =g =+% (see the Theorem 3.3). Therefore, by the

Theorem 3.21, the ratios (3.83) are hold if and only if

n=1

i(ﬂ«n — A )exp{—zlnal } +00 (3.84)

But |a,|< al. Therefore from (3.84) follows (3. 82). In the case when the sequence

al, so the ratio (3.84) and (3.82) are

(K‘n(F)) is non-decreasing, we have |a,|=ay

equivalent. The Corollary 3.13 is proved.

Since the definition of the order of the entire function and the logarithmic R-

order Pr >1 is defined by the convergence of the integral

pe+1
1 (o)

Corollary 3.14. Let the entire Dirichlet series (3.1) have the finite logarithmic
R-order Pgr >1 and either Inn =O(ﬂnpR/( pR_l)), when N — 00, or (3.34) to hold. In

order that (3.85) to hold, it is necessary and in the case when the sequence (;cn(F))

IS non-decreasing it is sufficient, that

o0 1 1 )"
Z(ﬂ«n—ﬂnl)[zmm) <+, (3.86)
n=1 n

In fact, if (3.34) is hold, then from (3.35) and Cauchy’s inequality easily follows,
that (3.85) takes place if and only if
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1 O_pR+l
(3.87)
I _ pR/( pR_l) . .
In the case, when INnn=0[ 4, , N — 00, we obtain the same conclusion

on the basis of the Corollary 3.8 from the Theorem 3.11 with @(x)=xP- for all

sufficiently large X.

If we take B(o)=cP", then
B(X)=—— P

and by the Theorem 3.2, the ratio (3.17) is hold if and only if

1_pR
nZ:l(ﬂn —xlnl)[%lna—loJ < 40 .

Further proof of the Corollary 2 is the same as the Corollary 1.

Let's consider the Dirichlet series, absolutely convergent in the half-plane
{s:Res<0}. For such series of the finite logarithmic R-order pg >0, the
convergence class is defined by the convergence of the integral

0 .
J|G|pR_ INM (o)do <+, (3.88)
-1

Corollary 3.15. Let the absolutely convergent in the half-plane {S:Res<0}

Dirichlet series (3.1) have the finite logarithmic R-order pg >0 and either

— Inlnn 0
lim < Pr

: 3.89
n—o0 |n/1r| pg +1 ( )

or Inn :o(ln*\an\), n—oo. In order that the relation (3.88) to hold, it is necessary,

and in the case, when the sequence (Kn(F)) Is non-decreasing, it is sufficient that
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Pr+1
o0 I +
Z(ﬂn—in-l)(—n |a”|] <400, (3.90)

In fact, if the condition (3.89) takes place, then firstly Inn=0(4,),n— oo, and

secondly Inn=A7(n>ny), where a < —R— pR . i e. (3.56) is hold with »(x)=x*"
PR +

and hy =1. Therefore, by the Corollary 3.1 from the Theorem 3.3 0, =23 =0, and by

the Theorem 3.15, the inequality (3.57) is true, from which in this case for all <0

we have

InM(o)<In y(ij + Kl(g)|a|l_1/(l_“) ,Ky(¢)=const,&>0,

1+¢

6 0
P 0 M (O')das “
1

pr-1(1-ar) do

(&)l

i do+ K
Iu(l-l—é‘) ' ]

, then the last integral in this inequality is convergent, and therefore,

0
Jlo
]

p3
p3+1

Since a <

taking into account the Cauchy’s inequality , we see that the ratio (3.88) is equivalent

to the ratio

Iny Jdo <+, (3.91)

If Inn=o(|n+|an|),n—>oo, then by the Corollary 4 0,=0y=0, and by the

Corollary 3.9 from the Theorem 3.28 we have (3.42) with hy=0, whence the

equivalence of the relations (3.88) and (3.91) again follows.

1-pq : : :
Let's choose ﬁ(0)=|0| P If pS >1, then the function g is non-decreasing

on (—o0;0)and
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1 1+
B(X)=——— X (3.92)
pR( PR +1)

Therefore, by the Theorem 3.21, the ratio (3.91) is hold if and only if

e R
A2 N =Ih=| <o (3.93)
nzzl( )[ﬂn ag}
o1 ] ) .
Since —|n¥ - —|n¥ and In™ |a,| <Inay, then from (3. 93) follows (3.90). In the
n n

case when the sequence is non-decreasing, we obtain (K‘n(F)) |an| = a5 and therefore

the relations (3.93) and (3.90) equivalent. The Collorary 3 for pg >1 is completely

proved.

If 0< p3 <1, the function gis decreasing and we can not refer to the Theorem

3.2. But from (3.92) it is clear that in this case the function Bllp, when p=p3+1, is

convex. By the Theorem 3.1 the conclusion of the Theorem 3.21 is true and, hence, the

conclusion of the Corollary 3. 15 takes place.

Suppose that the absolutely convergent in the half-plane {s:Res<O} the

Dirichlet series (3.1) has a finite R-order pg > 0, and the convergence class is defined

by the convergence of the integral

T InM(
[— do <+ . (3.94)
1

o] exp( P3 /\o\)
Corollary 3. 16. Let Inn= O(Inln), n — oo and the Dirichlet series (3.1) have

a zero abscissa of absolute convergence. In order that the relation (3.48) to hold, it is

necessary, and in the case, when the sequence (K’n(F)) IS non-decreasing, it is

sufficient that

N2
Z(ﬂﬂm)('” ‘a“q exp{”g—”“”}«oo- (3.95)

= yn In"|a,|
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It follows that (3.94) takes place if and only if

[— nu(oF) oo (3.96)
1 /o] eXp(PR/‘G‘)

i. . (3.78) is hold with B(o) = \o-\z exp(pg /\a\). It is easy to see, that the function s
is increasing on [_pg/z;o) and

J‘ 1 +j20 dt
0

PR 0 exP{PR /‘t‘} PR 1/|x|t2 exp{pgt} |

Using the L Hopital’s rules, we obtain

texp{-pt}dt )
lim { = lim Y exp{-py] :i.
ey Pexplopyl Y2y Cexp{-py}+ py Pexp{-py} P

Therefore

and by the Theorem 3.21, the relation (3.96) is hold if and only if, when

PR
1 1
~In=

I
The further proof of the Collorary 3.16 is the same as the proof of the Collorary 3.15.

eXpq— r <00,

S (h=ip)f 30

n=1

n

Control questions

1. Give the formulas for calculating the convergence abscissa of the Dirichlet
series.
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2. Formulate the three-lines theorem.

3. Formulate the definition of the maximum term and the central index of the
Dirichlet series.

4. Give the formulas for calculating the R-order and R-type of the Dirichlet
series.

5. Give the definition of the order and type of absolutely convergent in the half-
plane Dirichlet series.

6. Formulate the definition of the convergence class of the entire function.

Examples of problem solving

1. Find the abscissas of convergence and the absolute convergence of the series

2 |
Zn -2n sn nn

n=1
— Inn Inn 1
If inour case 7= lim —= lim ——=lim ==0_then
n—>ooﬂn n—>oonlnn n—owo N
-2n
Inja,| _ In(n ) — 2ninn
Oa =0 = — lim —lim ——Z=lim ——=2,
n—wo A, noo ninn  now ninn

Tasks for independent work

Find the abscissas of convergence and the absolute convergence of the series:

o0
n® en?
a) Y e e’ . Answer: 0p=0,=+0;

1
b) Z 1)" S'”'“n. Answer: O =+, 0 =—1;
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o0
1
C) Z(_l)n_eslnlnn. Answer: GQ=+OO, Oy =-0 ;
n=2

Ny

d) > (-1)"e*"".  Answer: 0,=0,0,=-1;

n-1
OO n 2
e) Y e*e™ . Answer: 0,=0,=-%0;
]
30, snl
f) > n*e"" - Answer: o =0, =-3;
n=1

o0

9) ziesn. Answer: 0 =0,=0;

i) Z(l+ nz)_zesn. Answer: 0. =0, =0.

139



References

. Kongpatiok A. A., I'anp 0. M. Metonuuni BkaziBku 110 crieukypey «Llimi
¢ynxuii. Panu Hipixae». JL.: JIAY, 1991. 36 c.

. KopenkoB M. €., l'omoenko I. Il. Ilimi ¢QyHkiii Ta HeckiHU€HH]1 JOOYTKU
(cerikypc). Jlyupk: BonuHcebka o6acHa apykaphs, 2008. 38 c.

. llepemera M. M., bopaymsxk M.T. HonatHi ¢yukuii: Tekctu nekmiit. JI.:
Bunasununii uentp JIHY, 2001. 61 c.

. lllepemera M. M., MyngBa O. M. Pamu [Hipixne: Texctu nexmii. JI.:
Bunasununii uentp JIHY, 2001. 64 c.

. Convay J. B. Entire Functions. In: Functions of One Complex Variable 1.
Graduate Texts in Mathematics, vol.11. Springer, New York, NY, 1978.

. Goro Shimura. Elementary Dirichlet Series and Modular Forms. Springer, New
York, NY, 2007. 152 p.

140



Electronic educational and methodical publication

Yuriy Gal
Olha Kutnyak

SELECTED QUESTIONS OF MATHEMATICAL ANALYSIS
(THE POSITIVE FUNCTIONS, DIRICHLET SERIES)

EDUCATIONAL AND METHODICAL MANUAL

Drohobych Ivan Franko State Pedagogical University

Editor
Iryna Nevmerzhitska

Technical editor
Iryna Artymko

Submitted for typing 18.04.2024 p. Format 60x90/16. Font Times. Conventional printed sheets
8,86. Order 23.

Drohobych Ivan Franko State Pedagogical University. (Certificate of entry of the subject of
publishing business into the state register of publishers, manufacturers and distributors of publishing
products DK Ne 5140 dated 01.07.2016 p.). 82100, Drohobych, St. Ivan Franko, 24, office 203.

141



142



	Preface
	Section I. Positive functions
	The upper and lower limits of the function
	Convex functions
	Slowly varying  functions
	Function
	Semi-continuous functions
	Order, type and category of growth
	Proximate order
	Poy's peaks
	Borel-Nevanlinna lemma
	Counting function and convergence indicator
	Density of sequence
	Control questions
	Examples of problem solving
	Tasks for independent work


	Capter II. Entire functions
	Maximum modulus
	Order and type of entire function
	Infinite products
	Decomposition of entire function into infinite product
	Control questions
	Examples of problem solving
	Tasks for independent work


	Chapter III. Dirichlet Series
	Convergence area, convergence abscissas
	Analogues of Cauchy’s inequality
	Three-lines theorem

	Firstly, we will prove one theorem of  Phragmen-Lindelöf type.
	Maximum term and central index
	Estimates of the maximum modulus through the maximum term
	Growth of entire Dirichlet series
	Growth of Dirichlet series, absolutely convergent in the half-plane
	Convergence classes
	Hardy's inequality
	Dirichlet series of finite -order or finite logarithmic -order
	Control questions
	Examples of problem solving
	Tasks for independent work


	References

