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Preface 
 

 The basis of the educational and methodological manual is based on the lectures 

that the authors for many years had read for the students of the Drohobych Ivan Franko 

State Pedagogical University. 

 Despite the completeness of the Theory of Analytical Functions, some of its 

subsections (theory of entire, meromorphic, subharmonious functions represented by 

different series) require significant researches, which  need the study of the properties 

of positive functions.   

 To understand the text of the manual, you need to familiarize with complex 

numbers, algebraic operations on them and to know the basics of Mathematical 

Analysis and the Theory of Analytical Functions. 

 In the chapter "Positive functions" students have the opportunity to recall the 

concept of the limit of the function, to get acquainted with some classes of positive 

functions, as well as with the classical scale of their growth. 

 In the chapter "Entire functions" such concepts as maximum modulus, maximum 

term, order and type of the entire function given by the power series, zeros and the 

expanding of the function into the infinite product are characterized. 

 In the chapter "Dirichlet Series" the representation by the Dirichlet series the 

entire and analytical in a half-plane functions as generalizations of power series are 

considered.  

 Theoretical material is widely illustrated by the solvable examples, tasks for 

independent work, control questions.  

 The manual will be interested for those students who plan to study in the 

magistracy and postgraduate studies, as well as for teachers for the group work. 
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Передмова 

 

В основу навчально-методичного посібника покладено лекції, які автори 

протягом багатьох років читали для студентів Дрогобицького державного 

педагогічного університету імені Івана. 

Незважаючи на завершеність теорії аналітичних функцій, деякі її 

підрозділи (теорія цілих, мероморфних, субгармонійних функцій, зображених 

тими чи іншими рядами) вимагають істотних досліджень, що часто зводяться до 

вивчення властивостей додаткових функцій. 

Щоб зрозуміти текст посібника, необхідно ознайомитися з комплексними 

числами, алгебраїчними діями над ними, а також знати основи математичного 

аналізу та теорії аналітичних функцій. 

У розділі «Додатні функції» студенти мають можливість пригадати 

поняття границі функції, ознайомитися з деякими класами додатних функцій, а 

також з класичною шкалою їх зростання. 

У розділі «Цілі функції» охарактеризовані такі поняття, як максимум 

модуля, максимальний член, порядок і тип цілої функції, заданої степеневим 

рядом, нулі і розвинення функції у нескінченний добуток. 

У розділі «Ряди Діріхле» розглядається зображення цілих та аналітичних у 

півплощині функцій рядами Діріхле як узагальненнями степеневих рядів. 

Теоретичний матеріал широко ілюструється розв’язними прикладами, 

завданнями для самостійної роботи, контрольними питаннями. 

Посібник буде цікавий студентам, які планують навчатися в магістратурі 

та аспірантурі, а також учителям для гурткової роботи. 
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Section I. Positive functions 

 

The upper and lower limits of the function 

 

 Let RR:  be an arbitrary function. If there is the sequence  
n

x  approaching 

to   such that   px
n
 , when n , then the number p  is called the partial 

limit of the function   when x . 

 Suppose that the set  p  of partial limits of the function   is bounded. Then 

there are the finite numbers  pM sup  and  pm inf . Let's prove that  

and  pm . To do this, suppose the opposite, that  pM  , i. e. M  is not a partial 

limit of the function  . Then there doesn’t exist the sequence   
n

x  such that 

  px
n
  when n . It means that there exists a number   that for all  

0
xx   

takes place      MMx , . It follows that the interval    MM ,  does not 

contain the partial limits of the function  . But it is impossible according to the 

definition of the number M . 

 So, if the set  p  of partial limits of a function   is bounded, then it has the 

largest and smallest elements. The largest of the partial limits is called the upper limit 

and is denoted by one of the symbols 

   lim , lim sup
x x

x x 
 

, 

and the smallest – the lower limit and is denoted by one of the symbols 

   lim , lim inf
xx

x x 


. 

 If the set of partial limits is unbounded above or below, then we accept 

accordingly 

  


x
x

lim ,       


x
x

lim . 

 It is clear that the definition of the upper limit can be represented as follows:  

 pM 
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property 1) can be written as  

        Axxxx
0

0 . 

 Similarly 

 
     

       








 ,0)2

,)1
lim

0





axxx

axx
ax

nn

x

 

and property 1) can be written in the form of  

        axxxx
00

0 . 

 If A  then  


x
x

lim   


x
x

lim  and if A  then   


x
x

lim . It 

means that      
nn

xx  . Similarly, if a  then  


x
x

lim

  


x
x

lim  and if a  then   


x
x

lim . In this case 

     
nn

xx  .  

 It is not difficult to see how these definitions will change, when bx .  

 Note some properties of the upper and lower limits.  

 Lemma 1.1. Inequalities 

                 


x
x

1
lim   


x

x
2

lim         xxxx
xxx

2121
limlimlim 


           (1.1) 

and  

                         


xxxxx
xxxx

12121
limlimlimlim   x

x
2

lim


            (1.2)  

are always hold, except the cases, when in the right or left parts (1.1) and (1.2), there 

is the uncertainty    .  

 Let’s prove, for example, the inequalities (1.1). Let  

 
jj

x

ax 


lim ,  
jj

x
Ax 


lim 2,1j  

and for simplicity we will assume that j
A  and j

a  are the finite numbers.  

Then 

       
jj

Axxxx
00

0 , 
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i.e. 

         20
212100
 AAxxxxx  

and hence, 

      2lim
2121



AAxx

x

, 

where, due to the arbitrariness of , we get the first inequality (1.1).  

 From the definition 2
A  follows the existence of the sequence  

n
x , which   tends 

to the  , that    
22

Ax
n . Inequality also takes place for this sequence 

   
111

limlim axx
x

n
n




 , 

that is,    
11

ax
n  for enough large n . Thus, there is a sequence  *

n
x  that tends to

 , that      2
12

*

2

*

1
 aAxx

nn . From this, we receive the inequality  

           2limlim
12

*

2

*

121



aAxxxx

nn
nx

, 

and due the arbitrariness of  , we have the second inequality (1.1).  

 Note that in the cases, where uncertainty    is in the right or left parts 

(1.1) and (1.2), these inequalities may not hold. To prove that it is enough to take 

   xx  
1  and    xbx  

2 , where   x , when x . Then 

  


x
x

1
lim ,   


x

x
2

lim  and      bxx
x




21
lim  , where b  is the arbitrary 

number. 

 From Lemma 1.1 it follows: if there exists  x
x

1
lim


, then 

    


xx
x

21
lim   x

x
1

lim


+  x
x

2
lim



 

and 

    


xx
x

21
lim   x

x
1

lim


+,  x
x

2
lim 



 

except the cases of uncertainty   .  

 The correctness of the next four lemmes follows either from the definition of the 

upper and lower limits or from the considerations similar to those used in the proof of 

Lemma 1.1. 

 Lemma 1.2. The next equalities are true 
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x
x

lim  x
x




lim , 

   


x
x

lim  x
x




lim . 

 Lema 1.3. Let     2,1,0
0

 jxxx
j

 . The inequalities  

 x
x

1
lim 



 x
x

2
lim


        xxxx

xxx
2121

limlimlim 


  

and 

          xxxxx
xxxx

12121
limlimlimlim 



  x
x

2
lim



 

always hold except the cases, when the uncertainty 0  is in their right or left parts.  

 In the case of existence of one of the limits in the Lemma 1.3 the inequality is 

converted into equality.  

 Lemma 1.4.  If f  is the continuous non-decreasing function, then 

     xfxf
xx




 limlim , 

and if f is continuous non-increasing function, then  

     xfxf
xx




 limlim . 

 

 Let RR:  be an arbitrary function. Let's define 

         xttxxttx  :sup,:inf *

*
 . 

 It is easy to see that   is non-decreasing function and  x*  is non-

increasing function. Therefore, there exists the limits and   Bx
x




*lim , 

finite or infinite. Let's define   ax
x




lim  and   Ax
x



lim .  

 Lemma 1.5.  The next equalities are true ba   and BA .  

 Let's prove, for example, that BA .  It follows from the definition B  that 

   xx * , i. e. BA . Let's assume the opposite, that BA . Then, if A , then 

  x , when x . Therefore,    x*
, when x , i.e, B . But 

it is impossible. If  A , then for chosen  C , BCA   there is 0
x , that is 

 x
*



  bx
x




*
lim
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  Cx   for all 0
xx  . Hence,   Cx 

0

*
 and *  is the non-increasing function. 

Then CB  , which is impossible.  

Convex functions 

 

 Let the function f  be defined on the interval  ba,  and bxxa 
21 . We 

connect the points   
11

, xfx  and   
22

, xfx  of the plane by a segment. If for any points 

21
, xx , such the segment is located above the curve  xfy  , then the function f  is 

called the convex one on the interval  ba, , and if it located under this curve, it is called 

the concave function on  ba, . We will study the convex functions, because a concave 

functions have the similar properties.  

 The equation of the segment connecting the points   
11

, xfx  and   
22

, xfx , 

has the form 

 
   

12

1

12

1

xx

xx

xfxf

xfy









, 

i.e. 

   
2

12

1

1

12

2 xf
xx

xx
xf

xx

xx
y









 . 

Therefore the convexity of the function f  on the interval  ba,  means that the next 

inequality takes place  

                                                
2

12

1

1

12

2 xf
xx

xx
xf

xx

xx
xf









                              (1.3) 

for each three numbers bxxxa 
21 .  

 Finally, let in (1.3)   10,1
21

 ttxxtx . Then  
21

, xxx  and the convexity 

of the function f  on  ba,  means that the next inequality is hold  

        
2121

11 xtfxfttxxtf   

for all and bxxa 
21  and 10  t .  
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 Theorem 1.1.  The convex on  ba,   function f  is continuous on  ba, .  

 Proof. If in (1.3) we’ll tend 
1

xx  , then we get the inequality    
1

1

lim xfxf
xx




, 

i. e. for each  bax ,
0
  is hold 

                                                           
0

0

lim xfxf
xx




.                                              (1.4) 

If in (1.3) we’ll tend xx 
2

, we get the inequality    xfxf
xx


2

lim , i. e. for each 

 bax ,
0
  is hold 

                                                           
0

0

lim xfxf
xx




.                                              (1.5) 

From inequalities (1.4) and (1.5) follow that    
0

0

lim xfxf
xx




 for all  bax ,
0
 , 

therefore f  is continuous on the right at each point from  ba, . The proof of continuity 

on the left is similar. You only need to approach 
2

xx   in (1.3) and then xx 
1

.  

 The theorem is proved. 

 The convex functions may be undifferentiated, such as the function xy   at the 

point 0x . However, such a theorem is correct.  

 Theorem 1.2. The convex on the interval  ba,  function f  has a non-decreasing 

continuous derivative on  ba, , except the countable set of points, where one-sided 

derivatives exist. At each such a point the left-sided derivative does not exceed the 

right-sided derivative.  

 Proof. Let's first show that there exists a right-sided derivative

 
   

0

0

0
0

lim
xx

xfxf
xf

xx 





  at every point  bax ,

0
 . Let's prove that 

   

0

0

xx

xfxf




 is 

the non-decreasing function on  bx ,
0 . It means that for all points bxxx 

20  the 

next inequality is hold 

       

02

02

0

0

xx

xfxf

xx

xfxf









. 
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It is easy to verify that inequality (1.6) is equivalent to inequality (1.3) with 01
xx   

and therefore, the existence of a right-sided derivative at every point  bax ,
0
  is 

proved.  

 The existence of  
0

xf

  at every point  bax ,

0
  also follows from the inequality 

                              

,                       (1.7) 

which is also equivalent to inequality (1.3). 

 The inequality (1.3) is also equivalent to the inequality 

                                     
       

21

2

2

1

1 , xxx
xx

xfxf

xx

xfxf










.                        (1.8) 

By tending  and xx 
2

, we get the inequality    xfxf

  at every point 

 bax , .  

 Let's take four points bxxxxa 
201 . Then from (1.8) we have  

                                   
           

02

02

0

0

1

1

xx

xfxf

xx

xfxf

xx

xfxf














.                      

(1.9) 

If we tend in (1.9) 
1

xx   and 
02

xx  , then we’ll get the inequality    
01

xfxf

 , 

i. e. the right-sided derivative is a non-decreasing function and therefore it is 

continuous function on  ba,  except the countable set of points. If we tend in (1.9) 

 and 
20

xx  , then similarly we’ll get that the left-sided derivative is continuous 

on  ba, , except a countable set of points. Finally, if we tend in (1.9) 
1

xx   and 
20

xx 

, we will have the inequality    
2121

, xxxfxf 
 .  

 Let    ba,,   be any interval, where 
f  and 

f  are continuous. Then for 

arbitrary points 01
xx   from   , , the inequality      

001
xfxfxf


  takes 

place, i.e.    

       
0010

0

lim xfxfxfxf
xx





 , 

       
01

0

0

01

01 , xxxa
xx

xfxf

xx

xfxf











xx 
1

xx 
1
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it means that the function f  has a derivative at each point from   , . 

 The theorem is proved.  

 Theorem 1.3. If the function f  is convex on the  ba,  and there exists the 

derivative  
0

xf    at some point  bax ,
0
 , then for all  bax ,  

                                                
000

xxxfxfxf  .                                     (1.10) 

 Proof. If in (1.6) we tend 
0

xx  , we’ll get the inequality 

      
0202002

, xxxxxfxfxf  , i. e. the inequality (1.10) for 0
xx  . For 0

xx   

the inequality (1.10) similarly follows from (1.7), when 
0

xx  . 

 Theorem 1.4. In order that the function f to be convex on  ba, , it is necessary 

and sufficient that 

                                                  dttxfxf
x

x


0

0
  ,                                           (1.11) 

where 0
x  is an arbitrary fixed point from  ba,  and φ is the non-decreasing function 

on  ba, .  

 Proof. If the function f  is the convex on  ba, , then as has been shown when 

proving the theorem 1.2, it has a non-decreasing derivative except a countable set of 

points, at which this derivative has gaps of the first kind. Then there exists the integral 

       
0

00

xfxfdttfdttf
x

x

x

x

   , 

i. e. we have (1.11) from    tft

 .  

 On the contrary, since   is the non-decreasing function, then from (1.11) for  

21
xxx   we have 

   
     

   
xx

xfxf
dtt

xx
xdtt

xxxx

xfxf x

x

x

x 















2

2

211

2

1

1
11

 , 

that is (1.8) is hold and therefore (1.3).  

The theorem 1.4 is proved.  
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Corollary 1.1.  If the function f  is convex on  ,a , then there exists 

 
 


,lim k

x

xf
x

, 

 if 0a  and   00 f  , then 
    xk
x

xf
 .  

 Proof. Since from (1.11) the function   is non-decreasing, therefore it has a 

limit   ,k , then according to the H’Lopital`s rule 

 
  kx

x

xf
xx



limlim . 

If 0a  and   00 f , then from (1.6) when 0x  we have    
22

// xxfxxf  , 


2

0 xx .  

 The corollary is proved. 

 If the function    xeFxf   is convex on   ln,ln , then the function F  on 

  , , 0  is called logarithmically convex on   , . Thus, a function F  is 

logarithmically convex on   ,  if and only if for any three numbers

  lnln,,
21321
 xxxxxx  the inequality takes place 

     21

12

1

12

2 xxx eF
xx

xx
eF

xx

xx
eF









 . 

 If we make a replacement rx ln  it means that for any three numbers 

  
21321

,, rrrrrr  the inequality is hold 

     
2

12

1

1

12

2

lnln

lnln

lnln

lnln
rF

rr

rr
rF

rr

rr
rF









 . 

From the definition of a logarithmically convex function, it follows that the function is 

continuous, has a continuous derivative, except a countable number of points in which 

there are one-sided derivatives, and at each point the left-sided derivative does not 

exceed the right-sided derivative. 

  By the Theorem 1.4, the function F  is logarithmically convex on   ,  if and 

only if  
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     dtteFeF
x

x

xx


0

0  , 

where 0
x  is an arbitrary fixed point from   ln,ln , ad  is  non-decreasing function 

on   ln,ln . If we make a replacement rx ln , w’ll get 

       
 

dt
t

t
rFdttrFrF

r

r

r

r

 
00

ln
0

ln

ln

0


 . 

Hence, denoting    tt ln  , we get that in order that the function F  is 

logarithmically convex on   , , it is necessary and sufficient, that 

   
 

dt
t

t
rFrF

r

r


0

0


, 

where 0
r  is an arbitrary fixed point from   ,  and   is non-decreasing function on 

  , .  

Slowly varying  functions 

 

The positive continuous function   on   ,a  is called a slowly varying one, 

if  

                                                        
 
 

  x
x

cx
1




                                  (1.12) 

for all   ,0c . If the function is increasing, then it is called the slow-increasing.  

 Theorem 1.5 (Karamat`s). If the function   is slowly varying, then the tending 

to the limit in (1.12) will be uniform for each c  from the fixed interval 

  
2121

0,, cccc .  

 Proof. Let`s    xexf ln . Then (1.12) will write in the form  

                                                   xxfxf ,0                               (1.13) 

for all R  and, therefore, it is necessary to prove that the approaching to the limit 

in (1.13) is uniform for    baba ,, . We can assume that    1,0, ba , 

otherwise, we can consider the function   xabff 
~

 and reduce  ba,  to  1,0 . Then  
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           xfaxfyfyfxfxf 
~~

 , 

where 
ab

a

ab

ax
y












, , so     yx  and      1,0,   ba  .  

 Suppose the opposite that the approaching to the limit in (1.13) is not uniform 

with  ba,  . Then 

                          
nnnnn

xfxfnx 11,00 .      (1.14) 

Let's denote 

                                       2/:2,0  
mmn

xfxfnmU              (1.15) 

and  

                            2/:2,0  
nmnmn

xfxfnmV .         (1.16) 

The sets n
U  and n

V , from )13.1(  have the properties 

     


nVVUU
nnnn

2,0,2,0
11

. 

That's why 2/3
N

mesU  and 2/3
N

mesV  for enough large N . Let NNN
VV *

 (to 

each element from N
V  we add n

 ). Then 2/3* 
N

mesV . Obviously that 

   3,02,0 
n

U  and  3,0* 
N

V . Therefore, *
n NU V  , that is  

N
U

0
  and 

 *

0 N
V  and, hence, NN

V 
0 . Therefore, from (1.15) it follows that 

                                                        2/
0

 
NN

xfxf ,                                 (1.17) 

and from (1.16) we have 

    2/
0

 
NNNNN

xfxf , 

i.e. 

                                            2/
0

 
NNN

xfxf .                                     (1.18) 

From (1.17) and (1.18) we obtain 

             
NNNNNNNN

xfxfxfxfxfxf
00 , 

which is not possible because of (1.14).  

Theorem 1.5 is proved. 
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Using theorem 1.5, we’ll prove the theorem of the representation of a slowly 

varying function. 

Theorem 1.6 (Karamat`s).  In order that the function   defined on  ,a  to 

be slowly varying, it is necessary and sufficient that 

                                                 
 









 
x

a

dt
t

t
xx


 exp

0  ,                                    (1.19) 

where 0
  and   are continuous functions   0

00
 at  on  ,a  and   0t  

when t .  

 Proof. Let the function   be slowly varying one on  ,1 . Let’s denote 

   xexf ln . By the Theorem 1.5 the approaching to the limit in (1.13) is uniform 

with  1,0 . Therefore 

       
1

0

0 xdxfxf  , 

i.e.   

        


xxfdttfx
x

x

0
1

1
 , 

            


xdttfdttfxdttfxf
xxx

x

1

0

1

0

1

1

  

                dttftfxdttfxdttfdttfdttf
xxx

 


0

1

1

0

1

1

00

1

1

1 . 

Let's denote 

           tftftxdttfxc   1,
1

0

1
 , 

so    
1

0

0
dttfcxc ,     xx 0 , and        

x

x dttxcxfe
0

ln . 

Therefore, 

         







 










 
x

xc

x

xc dt
t

t
edttex

ln

0

ln

ln

0

ln ln
expexp . 

Denoting    xcex ln

0
  and     tt ln , we get (1.19).  
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 On the contrary, for all   ,0c  from (1.19) we have 

 
 

 
 

            








  xocootdt
x

cx

x

cx cx

x

11ln1exp11lnexp
0

0 







, 

i.e. the function   is slowly variable.  

 Corollary 1.2.  If the function   is a slow varying and 0  is a fixed number, 

then   0 xx   and   xx  , when x .  

 In fact, from (1.19) for each   ,0 , when  
0

xx  , we get 

         xxxxx lnexplnexp
00

  , 

from here, the necessary relations follow easily. 

 Let's give another important criterion for the slow varying. 

 Theorem 1.7.  In order that continuous function   to be slowly varying, it is 

necessary and sufficient, that there exists the continuously differentiated function  , 

such that  x ~   xx ,  and 

                                                  
 
 




x
x

xx
0




.                                       (1.20) 

 Proof. If the function   is a slow varying, then it has the representation (1.19). 

Let’s denote  

 
 









 
x

a

dt
t

t
ax


 exp

0 , 

so,  

 
 

 
1limlim

0

0 
 a

x

x

x
xx






 

and 

 
 

 
      




 x

a

xxtdt
x

d

x

xd

x

xx
0ln

lnln

ln







. 

On the contrary, if  (1.2) takes place, then for all   ,0c  

   
 
 

  


  xcod
x

x
cxxcx

x

,ln1lnln 



 , 
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i.e. 

 
 

 
 

1limlim 
 x

cx

x

cx
xx 






. 

 The theorem is proved. 

 When proving Theorem 1.7, we have shown that for continuously differentiated 

functions from the condition (1.20) follows a slow change of function  . In the 

mathematical literature, condition (11) is often taken as the definition of a slow change. 

Using (1.20), it is easy to show that the function   1,ln  kxx
k

  is a slowly varying 

function (here  xxxxxx
kk 110

lnlnln,lnln,ln


 ). Let’s notice, that from the slow 

change of the function   does not follow the condition (1.20) in general, as evidenced 

by the example of a continuously differentiable function   xxx sinln  . 

Function xln  

  

Let RD  be the domain of definition of the function f . Let's denote 

  0:  xfDxD ,   0:  xfDxD  and 

 
 
















,\,0

,,

DRx

Dxxf
xf            

 
















.\,0

,,

DRx

Dxxf
xf  

In particular, for Ra  

,,,
2

,
2

 





 aaaaaa
aa

a
aa

a  

and 










.1,0

,1,ln
ln

x

xx
x  

Theorem 1.8. If  nka
k

,,2,10   , then 

                                                  






 
n

k
k

n

k
k

aa
11

lnln ,                                 (1.21) 

and if   nka
k

,,2,10  , then 
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naa
n

k
k

n

k
k

lnlnln
11









                                                                                       

(1.22) 

 Proof. Let's start from (1.21). If 0
1




n

k
k

a , then 0ln
1





n

k
k

a  and the inequality 

(1.21) is obvious. If  0
1




n

k
k

a , then  nka
k

,,2,10   









n

k
k

n

k
k

n

k
k

aaa
111

lnlnln , 

that is, again leads to (1.21). 

 Using (1.21), we have 

     nankannkana
n

k
kkk

n

k
k

lnln1:maxlnln1:maxlnln
11

 







. 

 

Semi-continuous functions 

 

 The function   ;: Ef  defined on the set RE  is called the upper 

semi-continuous at Ex 
0 , if for all  

0
xfA   there exists the number   0,

0
 Ax

, such that the inequality  xfA  is hold for all   
0

xxEx  .  The function 

f  is called the upper semi-continuous one on the set E  if f  is the upper semi-

continuous at each point of the set E . The function f  is called the lower semi-

continuous one (in 0
x , on E ) if the function f  is the lower semi-continuous 

(respectively in 0
x , on E ). We will study the the upper semi-continuous functions. 

The simplest examples of the upper semi-continuous functions are:  
1

f x
x

   

and   ln ,f x x x R  .  The properties of the upper semi-continuous function follows 

directly from its definition: 
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 I. In order that the function   ;: Ef  to be the upper semi-continuous 

on E , it is necessary and sufficient that the set   AxfEx  :  is open on E  for all 

Rx . 

 II. The sum of two upper semi-continuous functions is the upper semi-

continuous function. 

 III. The product of the upper semi-continuous function and the positive constant 

is the upper semi-continuous function. 

 IV. If the function f  is the upper semi-continuous at the point 0
x , then 

   
0

0

lim xfxf
xx




.  

 V. If the function f  is the upper and the lower semi-continuous at the point 0
x , 

then f  is continuous at this point.  

 The semi-continuous functions have some properties close to the properties of 

the continuous functions. For example, the analogue of Weierstrass`s classical theorem 

is correct. 

 Theorem 1.9.  If the function f  is the upper semi-continuous on the compact K

, then it reaches its maximum on K , i. e.  there exists Kx 
0 , such that    

0
xfxf   

for all Kx .  

 Proof. Let`s denote   KxxfM  :sup . If   xf , then M  and we 

can take any point in the role 0
x .  

 If   xf , then there exists a sequence  
k

x  on K , such that   Mxf  . 

Since K  is the compact, we can assume that Kx
k

  and we need to show that 

  Mf  . To do this, suppose from the opposite, that   Mf    and we’ll choose 

M  . Then, by property I, the set       xfKxG :  is open on K  and 

contains the point  . It follows that in some interval     G ,  there are 

infinitely much members of the sequence  
k

x , and we have 

   kMxfM
k

, .  
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 Theorem 1.10. If  
n

f  is the non-increasing sequence of the upper semi-

continuous functions on the set E , then the function    xfxf
n

n 
 lim  is the upper semi-

continuous function on E .  

 Proof. It is clear that     
1

xfxf  on E . Let`s denote  

    AxfExAE  : . We need to prove that  AE  is the open set. 

 Let's take an arbitrary point  AE . Since     Af
n

  , then   A
n

  

for all 0
nn  . Therefore, the sets     AxfExAE

nn
 :  are the neighbourhoods 

of the point  . But    xfxf
n

 , that is    AEAE
n

 . Hence,  AE  contains the 

neighbourhood of the point   and is the open set. 

 Theorem 1.11. If f  is the upper semi-continuous function on the set E , then 

there exists a decreasing sequence  
n

f  of continuous functions on E , such that 

   xfxf
n

n 
 lim  .  

 Proof. Let's consider only the case, when  E  is the compact. 

 We can assume that   xf  for all Ex , because otherwise we can consider 

the function   xfexp , which is the semi-continuous on the set E  and positive. If 

      nxfx
n

,exp  and all n
  are continuous functions, then all n

  are the 

positive functions and functions     xnxf
nn

 /1ln  are continuous on E  and 

     nxfxf
n

, .  

 So, let it E  be a compact and   xf  for all Ex . Let's denote 

    Eyyxnyfxf
n

 :max , 

and let  xyy
nn

  such that 

      xyxnxyfxf
nnn

 . 

 Let's show that each n
f  is a continuous function on E . In fact, for everyone 

Ex *  

        ** xyxnxyfxf
nnn
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       ****** xxnxfxxnxyxnxyf
nnn

  

and similarly, 

    ** xxnxfxf
nn

 , 

i.e. 

    ** xxnxfxf
nn

 , 

from where the continuity of the function n
f  easily follows.  

 It is clear that the sequence  
n

f  is decreasing. Suppose that      nxgxf
n

,

. Since      xfxf
n , then      xfxg . If we take the limit in (1.23), we’ll 

get    nxxy
n

,  and therefore by to the property IV 

 



n

n
n

xf limlim           xfxyfxyxnxyf
n

n
nn




lim , 

i.e.    xfxg  . Therefore,    xfxg  , the Theorem 1.11 is proved.  

Order, type and category of growth 

 

 Let the function  rAA  be defined on  ,0 , positive and non-decreasing on 

  0,,
00
 rr  .  

 The values 

   
r

rA

r

rA

rr ln

ln
lim,

ln

ln
lim








   

 

are called the order  A   and lower order  A   of the function A  correspondly.  

In the case, when  0 , to characterize the growth of the function A  we 

use the values of the type  ATT   and the lower type  A   by the formulas 

   



r

rA

r

rA
T

rr ln

ln
lim,lim




 . 

If 0T , then A  has the minimum (zero) type, if T0 , then A has the normal 

(average) type, if T , then – the maximum (infinite) type.  
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 Suppose that 1
0
r , i. e. the function  rAA  is positive and non-decreasing on 

 ,1 . Suppose also that    A  and   . Then   rrA   for every 

  , , when  
0
rr  , so  

                                                          
 







1

1
dr

r

rA


.                                            (1.23) 

On the other hand, if (1.23) takes place, then for each 0   when  0rr   

 
 

 


r
dt

t
rAdt

t

tA

rr

11
11

 







, 

i.e. 

                                                               rrA   0rr  .                                     

(1.24) 

 From (1.23) and (1.24) it follows that  

 
 









 




1

1
:0inf dr

r

rA
A


 , 

Moreover, if the integral in (1.23) is divergent for all 0 , then we suppose that 

  A .  

 From (1.24) it also follows that    A  and if    A , then A  has  the minimum 

type, that is   0AT .  

 Let`s suppose    A  again. Let`s consider that the function A  belongs 

to the class of convergence or divergence depending on whether the integral is 

convergent or divergent 

                                                             
 







1

1
dr

r

rA
 .                                          (1.25) 

As mentioned, if the function A  belongs to the class of convergence, it has a minimum 

type.  

 We consider that the functions 1A  and 2A  have the same category of growth if 

they have the same order, and in the case of the finite order, they have the same type 

and simultaneously belong to the class of convergence or divergence.  
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 The function 2A  has a higher growth category than the function 1A  if one of the 

conditions is hold:  

 a)    2 1A A   ; 

b)    2 1A A  , but  2T A    and  1T A   ; 

c)    2 1A A  , but  20 T A    and  1 0T A  ; 

d)    2 1A A  ,    2 1 0T A T A   but 1A  belongs to the class of divergence, 

and 2A  belongs to the class of convergence. 

 Theorem 1.12.  Let     rrrA 01 , and 

 
 

 

r

r

constcdt
t

tA
crA

0

0
1

02 , . 

Then the functions 1A  and 2A  have the same category of growth.  

 Proof. We can assume that 00 c  and 10 r . Since 

                                                 
 

    

er

r

er

r

rA
t

dt
rAdt

t

tA
erA 112  ,                          (1.26) 

then    21 AA    and if       21 AA , then     eATAT 21  . On the other hand, if 

  11 , rrbrA a  , then 

  constKr
a

b
Kdt

t

bt
rA

r

r

a

  ,

1

2


, 

that is    12 AA    and if       21 AA , then     /22 ATAT  .  

 It follows that the functions 1A  and 2A  have the same order   and if  0 , 

then they have the same type. In the case when 0 , the function 1A  has the maximum 

type and, because of (1.26), the function 2A  has the same type.  

 Finally, if  0 ,  

       


















1

1

1

1

1

1

1

1

1

1

1

1

2 1
dt

r

rA

t

dt
dr

r

rA
dr

r

rA

t

dt
dt

t

tA

r

t

  , 
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i. e. the functions 1A  and 2A  belong to the class of convergence or divergence 

simultaneously.  

 Theorem 1.12 is proved. 

Proximate order 

  

The function  r  on  0;  is called the proximate order if 

1)   0, 0r r     ;  

2)    0; ,r r     ;  

3)  r  is continuously differentiated function on  0; ;  

4)  ln 0,r r r r    

 If the difference between the proximate orders is  1/ lno r , when r  , 

then those two proximate orders are called equivalent. Note that for equivalent 

proximate  orders  1 r  and  2 r  

             1 2
1

1 2exp ln 1
r r o

r r r r e r
 

 


     . 

 Note some of the simplest properties of the proximate order. 

 Lemma 1.6.  If  r  is the proximate  order, then the function    r
l r r

 
  is 

the slowly varying.  

 Indeed 

 

 

 
     

ln
ln 0

ln

rl r d l r
r r r r r

l r d r
  


      , 

that is the function l  is the slowly varying.  

 Lemma 1.7.  If  r  is the proximate order and 0  , then the function 

   r
V r r


  is increasing on  0;r  .  

 Indeed 

               1 1
ln 1 1 ,

r r
V r r r r r r o r r

 
  

 
      , 
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that is,   0V r   for all enough large r .  

 Lemma 1.8.  If  r  is the proximate order, and a and b  are the fixed numbers, 

0 a b    , then for each 0  ,  0r r   and each  ;c a b  

           
1 1

crr r
c r cr c r

       . 

 In fact, let    r
l r r

 
 . Then 

 

 

   

 

cr

r

l cr cr

l r c r




  and since by the Lemma 1.6 

the function l  is slowly varying, then by the Karamaty`s Theorem 
 

 
1,

l cr
r

l r
   

uniformly in relation to  ,c a b .  

 As can be seen from the Lemma 2.3, the function 
 r

r


 behaves like a function 

r .  This is also evidenced by the Lemma 2.4, the correctness of which is easily checked 

using the H’Lopital`s rule.  

 Lema 1.9.  If  r  is the proximate order and   0r   , then, when 

r   

       1

1

1 1
, 1

1

r
t q r qo

t dt r q
q

 




  
  

  , 

and 

       11 1
, 1

1

t q r q

r

o
t dt r q

q

 





  

  
  . 

 Let's prove, for example, the first of these correlations. We have 

 

 

 

      
1

1
lim lim

1 ln

r
t q

r q

r q r qr r

t dt
r

r r r q r r r





 
 





   
 

  


 

   

1 1
lim

1 ln 1r r q r r r q  


    
. 
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 Let A  be a positive non-decreasing function on  0;r  . The proximate order 

 r  is called the proximate order of the function A , if 

                                                 
 
 

 *lim 0;
rr

A r

r





   .                                    (1.27) 

The number 
*  is called the value of the type ot the function A  relatively to the 

proximate order  r . Of course, if   r  is the proximate order of the function A  and 

   r r   , then  A   is the order of the function A . Note that if in 

(1.27)  r  replace by the equivalent proximate order, then the value of the type 
*  

will not change. 

 The proximate order  r  is called the lower proximate order of the function A

, as 

 
 

 *lim 0;
r

r

A r

r





   . 

 It is clear that     r A r     , where  A  is the lower order of the 

function A .  

 The proof of the Valiron`s Theorem 1.13 belongs to S. Shah. 

 Theorem 1.13. For each positive non-decreasing function A  of the finite order, 

there exists the proximate order  0; . 

 Proof. It is enough to construct a function  r  that, instead of condition 3) in 

the definiton of the proximate order, satisfies the weaker condition, that  r  is 

continuous on  0;  and continuously differentiated on  0;  with exception of 

isolated points, in which there exist the one-sided derivatives. Because in the enough 

small neighborhoods of angular points  r  can be replaced by  1/ ln ,o r r   so 

that the new function is continuously differentiated and the conditions 1), 2), 4) and 

(1.27) are not violated. Note also, if    1 ,A r O r  , then to prove the theorem, 

it is enough to choose  r ≡0.  
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 So, let   ,A r r  , and   be the order of the function A . Let's denote 

 
 ln

ln

A r
d r

r



 , 

so  lim
r

d r 


 , there are two possible cases:  

1) there exists a sequence   ,kr k    such that  kd r  ;  

2) the inequality 0r r  is hold for all  d r  .  

Let's consider the first case. Let     max :r d x x r   . Then 

  ,r r     and the set     max :M r d r r   is unbounded. Let 1 3exp 1r 

and 1r M . Let's define 

   1 1, 0r r r r    . 

Denote     1 1 1min : 1,t t N t r t r       and 

   1 1 1,r r r r t    . 

Let 1u  be the abscissa of the first point of curves`s intersection  y r  and 

 1 3 3 1ln lny r r t    at 1r t . Denote 

   1 3 3 1 1 1ln ln ,r r r t t r u      . 

It is obviously that    r r   on  1 1,t u  and    1 1u u  .  

 Finally, let   2 1minr M r u  .  If 2 1r u , then 

     2 1 2,r r r u r r      . 

Next, with 2r  we make the same consideration as with 1r , and since 

1 1 1 1n n n n n nr r u r t r        , 

then, repeating this process, we define  r  on  0; .  

 Thus, the constructed function  r  is continuous and has a continuous 

derivative everywhere, with the exception of points nt  and nu . in which there exists 
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one-sided derivatives. Since either  r ≡0 or  
2

1

ln ln
r

r r r
   , then the 

condition 4) is hold. By construction      r r d r    at 1r r , 

     n n nr r d r    for all n  and   ,r r   . Therefore, 

     ln ln lnA r d r r r r   when 1r r  and      ln ln lnn n n n nA r d r r r r   for 

everyone n N . It follows that  

                                                         
 
 

lim 1,
rr

A r

r


                                                 (2.6) 

and the theorem in this case is proved. 

 Let's consider the second case,  0 d r    for all 0 3exp 1r  . Let 

    0max :r d x r x r    . Then   ,r r   , and the set 

    0 :L r r d r r    is unbounded. Let 1 0r r , and 1s  is the largest of the abscissa 

of the points of curves`s intersection  y r  and 3 3 1ln lny r r   . Obviously, 

there exists the point 1s , when  1r   is large enough such 1 10 s r   and  0 1,L r s 

. Let's denote   1 0 1max ,t L r s  and 

     1 1 1, 0r t d t r s     . 

Take now 2 1r r   so large that the largest of the abscissa 2s  of the points  of curves`s 

intersection  y r  and 3 3 2ln lny r r    satisfy the conditions 1 2 2r s r   and 

 1 2,L r s  . Let's denote   2 1 2max ,t L r s , and let 1u  is such a point from 

 1 1,s r , at which   3 3 1ln ln 2r r r    . Let`s take 

 
   

3 3 1 1 1

2 2 1 2

ln ln , ,

, .

r r s r u
r

t d t u r s






   
 

  
 

Continuing this process, by inequality 1 1n nr r    we can construct  r  on  0; .  

 From the construction it can be seen that the function  r  is continuous and has 

a continuous derivative everywhere, with the exception in points ns  and nu , in which 



34 

 

there exist one-sided derivatives   0r  , or  
2

1

ln ln
r

r r r
  , that is, condition 

4) takes place. It is clear, that    r r   ,      r r d r      when  

0r r  and      n n nt t d t    for all n N . Hence, it follows (2.6). Theorem 2.2 

is proved.  

 Theorem 1.14.  For each positive non-decreasing function A  on  0;  of the 

finite lower order   there exists its proximate lower order.  

 Proof. Let 

 
 

1

ln
, 2

ln ln

r
d r r

r A r
 


, 

such that  1

1
lim

1r
d r





. Let's construct the proximate order  1 r  such that 

 1

1

1
r
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   1 1d r r  for all 0r r  and    1 1n nd r r  for some sequence   nr , that 
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  . It is easy to check, that  r   

has all the properties of the proximate order,    ,r r      ln lnA r r r

, when 0r r  and    ln lnn n nA r r r  for all 1n  , that is  r  is the proximate lower 

order of the function A .  

 

Poy's peaks 

 

 Theorem 1.15.   Let the functions 1 2, ,    be positive and continuous on 

 0;r   , such that 2 1/   is  non-decreasing on  0;r   and 
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Then there exists a sequence   ,nr n   , such that 

                                            

 

 
 

 

 
 

1 0
1

2
2

, ,

, .

n
n

n

n
n

n

r
r r r r

r
r

r
r r r

r













 


 
   



                     (1.30) 

 Proof.  Let's assume that 0 1, , , nr r r   are already known and denote 

 

 
0

1

max :n n

r
M r r r

r





  
   

  

 

(in particular    0 0 1 0/M r r  ). From the first condition (1.29) follows the 

existence of a number  

 

 1

min 1:n n

r
a r r M

r





  
    

  

. 

Let b a , such that 

 

 

 

 2 2

max :
b r

r a
b r

 

 

  
  

  

. 

 Let's choose  1 ;nr a b  ,so that 

                                             
 

 

 

 
1

1 1 1

max :
n

n

r r
a r b

r r

 

 





  
   

  

,                          (1.31) 

and show that for  1nr    (1.30) is hold. 

 In fact, if 0r r a  , then 

 

 

 

 

 

 
1

1 1 1 1

n
n

n

rr a
M

r a r

 

  





   , 

and if 1na r r   , then by the construction 
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So, the first inequality (2.8) on  0 1, nr r   with 1nr   instead of nr  is hold. 
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 Further, since 2/ 1   is non-decreasing on  0;r  , then from (2.9) for 

1nr r b    we have 
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and when r b  the second inequality is hold  
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So, the second inequality (2.8) on  1;nr    with 1nr   instead nr  is hold. The Theorem 

2.4 is proved.  

 The sequence  nr  (the existence of which is already proved) is called the 

sequence of Poy's peak.  

 Here are the simplest corollaries of the Theorem 1.15. 

 Corollary 1.3. Let   be the positive continuous non-decreasing function on 

 0;r   of the order  0;   and 0   is an arbitrary number. Then there exists 

the sequence  nr   , n   of the Poy`s peaks, such that 
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Let's denote  1 r r    and  2 r r   . Since   has the order  , then 
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Therefore, by the Theorem 1.15, there exists a sequence of the Poy`s peaks, for which  

(1.32) is hold. 

 Corollary 1.4.  Let   be the positive continuous non-decreasing function on 

 0;r   of the lower order  0;  , and  0;   is an arbitrary number. Then 

there exists the sequence   ,nr n    of the Poy`s peaks, such that 
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 In fact, let's denote  
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Therefore, by the Theorem 1.15, there exists a sequence  nr  of the Poy's peaks such 

that  

 

 

 

 

 

 

 

2

02

2

2

, ,

, ,

n n
n

n

n n
n

n

r r r
r r r

r r
r

r r r
r r

r r

 

 

 

 

 




 












  


 


   


 

whence the inequalities (1.33) follow.  

 If we use the proximate order, then we can get much more flexible statements.  
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 Theorem 1.16.  Let   be the positive continuous non-decreasing function on 

 0;r   of the order  0;  . Then there exists the increasing sequences nr ,  n  

and the non-negative sequences  na ,  nA  and  n , such that 

1) 0, 0n n    and 0na  , when n  ;  

2) nA   and n na r  , when n  ;  

3) for all 0n n  and  ,n n n nr a r A r  
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n

n n
n

r
r r

r

 

  


 

   
 

  .                              (1.34) 

 Proof. Let  r  be the proximate order of the function  , which  was 

constructed in the process of proving the Theorem 1.14 (Valiron`s theorem). Then 
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. 

Therefore, by the Theorem 1.15, there exists the increasing sequence  nr  of the Poy's 

peaks, that is tendinging to  , such that  
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Denote 

2ln , 1/ ,n n nA r a A   
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Let's denote   21/ lnn n nr r      , such that  0n n   . Then 

        ln ln ln

n n

r r

n

r r

r r r d r d r              

2 2 2

ln ln1
ln

ln ln ln ln ln
n n

r r
n

r r

r rd d
r

r r r

 

   


     

 

 2

ln ln ln

ln ln ln ln

n n n n

n n

r a r A

r r A


  


 

 
 3 3

2
3

1 1ln ln1
0

12 2 ln
ln ln ln

2

n n

n
n n

or r
n

r
r r


   

 
 

 

. 

 Therefore, from (1.36) it follows that 

          1
1 1 ,

n n

o
n n

n n

r r
r r e o r n

r r

   

  

 
   

      
   

, 



40 

 

and there exists the sequence    0n n   , that the inequality (1.34) is hold. 

 If n n nr r A r  , then from the second inequality (1.35) we have 
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 Hence, we again come to the existence of a sequence    0n n   , such  

that the inequality (1.34) takes place. The theorem is proved.  

 Theorem 1.17.  Let   be the positive continuous non-decreasing on  0;r   

function of the lower order  0;  . Then there exists the sequences 

       , , ,n n n nr a A  and  n  that satisfy the conditions 1) - 2) of the Theorem 1.16  

and such that for all 0n n  and  ;n n n nr a r A r  
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 The proving of this theorem is similar to the proving of the Theorem 1.16, but 

we need to choose 1 and 2  by the next way:  
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Borel-Nevanlinna lemma 

 

Theorem 1.18.  Let u  be the continuous function on  0;r    and 

  ,u r r  , and   be the positive continuous function on [u0;+∞) (u0=u(r0)), 

such that , and 

                                                            

 .                                         (1.37) 

Then for all , except, perhaps, the set of the finite measure  

                                                   
.                                  (1.38) 

 Proof. Let`s denote  as the closed set, on which (1.38) is not hold, 

that is 

                                                     
.                                (1.39) 

Let . Suppose that for each  the set , otherwise the 

statement of the theorem is obvious.  

 Let 

, 

. 

Then  and .  We obtain that 

, i. e.  
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Then we have 
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. 

Hence,  and , when . 

 From the definition of the sequence  follows also that on the intervals 

 
(1.38) is hold. So, the set , where (1.38) is not hold, is covered by the 

intervals . But 

, 

and, consequently, the Theorem 1.18 is proved. 

 Remark.  The condition (1.37) cannot be weakened. Indeed, let 

. Denote .  

Then the reversed to  function  satisfies the conditions of the Theorem 1.18, 

but the equality (1.39) is hold on  , because  

 

. 

Corollary 1.5.  If is a positive function that satisfies the conditions of the 

Theorem 2.7 and , then for all , except, perhaps,  the set of  the finite measure,  

                                              

  .                                     (1.40) 

 In fact, the functions and  satisfy the conditions of 

the Theorem 2.7 and therefore, for all , except, perhaps,  the set of the finite 
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. 

Therefore, when  

. 

 The set E is called the set of the finite logarithmic measure, if 

. 

 Corollary 1.6.  If a positive function satisfies the conditions of the Theorem 

1.18 and , then for all , except, perhaps,s the set of the finite logarithmic 

measure 

                                              

  .                                     (1.41) 

 In fact, if we apply the Corollary 1 to the function , we will get  

                                                

                        (1.42) 

for all , except, perhaps, the set of the finite measure. Let's denote , that is 

. With such the replacement, the set of the finite measure passes into the set of 

the finite logarithmic measure and from (1.42) we receive 
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so, . Since , then from the 

last correlation we get (1.41). 
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Counting function and convergence indicator 

 

 Let  be the complex sequence with a single cluster point in , ordered so 

that  (among the members of this sequence can be the same members and 

also equal to zero). The function 

 

is called the counting function of the sequence . It is the number of the members 

of the sequence  that are contained in a closed circle . The function 

  

is called the average counting function or Nevanllina`s counting function of the 

sequence 
.
 

 Let  and , and  be an arbitrary 

number. Then, when  

           

.      (1.43) 

Therefore, by the Theorem 1.23, the functions  and  have the same growth 

category. However, the function  has advantages upon the function . It is 

continuous and continuously differentiated on , except the countable number 

of points, which have the one-sided derivatives. At the points, where the derivative 

exists, the inequality 
𝑑𝑁(𝑟)

𝑑𝑟
≤

𝑛(𝑟)

𝑟
 is hold, that is 
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𝑟
. From (1.43) also follows that 

 is a logarithmically convex function. 
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 Suppose that  for all , and  is the largest of the integers, such that 

. Then, from (1.43) we get 

 

 

 

. (1.44) 

 Since the counting function of the complex sequence  is the counting 

function of the non-negative sequence , and the rejection of the finite 

number of the members of the sequence does not affect on the asymptotics of the 

counting function, then we will study only the positive sequences.  

 So, let . Suppose that 

                                                             

                                             (1.45) 

for some . Then the number 
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is called the convergence indicator of the sequence . If  for each 

, then . Note that in the case, when , the series  can be both 

convergent and divergent.  

 Theorem 1.19.  Let . Then the condition (1.45) is equivalent to the 

condition 

                                                           

.                                           (1.47) 

 Proof.  Let  and . Then  on . Taking the Stieltjes 

integral and integrating it by parts, we get 

                      

.            (1.48) 

It follows that 

. 

Approaching , we get (1.47).  

 On the contrary, for all  and all  

, 

so that from (1.47) follows (1.45). Theorem 1.43 is proved. 

 From this theorem it follows that the convergence of the sequence can be 

denoteded by the equality 

                                                

.                             (1.49) 
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On the other hand, if  is the order of the function , then, as had 

shown in 1.12,  

                                          

.                               (1.50) 

From the formulas (1.49) and (1.50) follow the next theorem. 

 Theorem 1.20.  The convergence indicator of the sequence is equal to the order 

of its counting function.  

 

Density of sequence  

 

 Let , and  is the counting function of the sequence 

. The values 

 

are called the upper and the lower densities of the sequence . If , then 

the sequence is called the measurable one  and  is called its density. 

Let  be an arbitrary number. If , then  and if 

, then  . Therefore, 
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The upper  and lower  average densities of the sequence  we denote by the 
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Theorem 1.21.  The inequalities  are hold. 

Proof. If , then  for each  and all . 

Then  

, 

where ,  is an arbitrary number. Therefore, we obtain the inequality 

, which is obvious if .  

Then 

 

and 

, 

that is, we have the inequality . Theorem 1.21. proved. 

  Notice that the obtained estimates in Theorem 1.21 are exact. For example, if 

, then  and when . Therefore, 

. Let`s prove that estimate  is exact. For this it will be enough to 
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and since , then 

, 

i.e. .  

Since 

, 

then, when  the inequality  takes place. But 

. 

Therefore, when  , we obtain 

. 

Since  for all , then from the last inequality we get  

. 

Until now, the sequence  has been arbitrary. If we choose it so that 

, then when  we’ll get 
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Theorem 1.22. The inequalities  are hold, where the 

expression on the right part should be considered as such that equals to the , when 

 and for arbitrary , and equals to , when  and . 

Proof. If , then  for each  and all . 

Then 

, 

and we get the inequality  and, given the arbitrariness of , we have the 

inequality , which is obvious, when . 

Suppose that .  Then  for each  and all . 

Therefore, if , then  

 

, 

that is 

. 

 It follows that 

                                                             
                                        (1.51) 

for each . If , then the inequality (1.51) is obvious and in this case 

. If  and , then   and approaching  we get . 
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Theorem 1.22 is proved. 
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are called the upper and lower densities of the sequence  by the basis  

correspondingly. It is clear that and . 

Theorem 1.23.  If 

                                   
 ,                             (1.52) 

then the  functions  and  are continuous on  and 

                                     
.                            (1.53) 

Proof. The inequalities  and  are obvious. Further, from 

the condition (1.52) it follows that the number of the members of the sequence  , 

located on the interval , does not exceed the number . Consequently, 

for any , we have 

                                                

.                                       (1.54) 

When  it follows the inequality . Finally, from the identity 

 

we obtain the inequalities 

 

and therefore, . Hence, all inequalities (1.53) are proved. 

We only must to prove the continuity of the functions  and .  

 Let . Using (1.54) and 

, 

we have 

, 

, 

i.e. 
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. 

 From these inequalities follows the continuity of the functions  and 

, and hence, the continuity of  and . Theorem 1.23 is proved. 

 Corollary 1.7.  If  for some , then the sequence  is 

measurable. On the contrary, if the sequence   is measurable, then for all 

. 

 In fact, if  for some , it follows from (1.53) that 

, that is, the sequence is  measurable. On the contrary, from the 

identity 

 

and the existence of  the limit , it follows that 

 

 Theorem 1. 24. There exists the limits 

 

and the inequalities are hold  

. 

 Proof. From the identity 

 

it follows that  
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and, likewise, . We will consider only the proving of the existence of the 

limit  and proving the inequality . 

 Let . Then  and for each  

there exists , such that . We’ll choose  so that 

.  Then  and there exists the natural number , such that 

. Since the function  is non-increasing, then we get   

, 

i.e. 

. 

But 

 

and  

. 

Therefore, 

, 

whence, due to the arbitrariness of , the existence of the limit 

 follows. Theorem 1.24 is proved. 

 The values  and  are called the minimal and the maximum densities of 

the  sequence 
 
correspondingly.  
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1. Formulate the definition of the upper and lower limits. 

2. Give the examples of the convex functions. 

3. Formulate the definition of a slowly variying function and give the example. 

4. Formulate the definition of a semi-continuous function and give the example. 

5. Define the class of convergence or divergence of the function. 

6. Formulate the definition of the proximate order of the function and give the 

example. 

7. Define the counting function and the convergence indicator of the sequence. 

8. Formulate the definition of the upper and the lower densities of the sequence. 

 

Examples of problem solving 

Example.  Find the upper and the lower limits of the functions: 

a) ; 

b) . 

Solving. 

a) Since , when 
 

and 
 

, 

 then  . Similarly,  , 

when  and ,  

then 
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b) Since , when  and , 

and , then . 

Similarly, . 

 

Tasks for independent work 

 

 Find the upper and the lower limits of the function: 

1) ; 

2) ; 

3) ; 

4) ; 

5) ; 

6) ; 

7) ; 

8) ; 

9) ; 

10) ; 

11) . 
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Capter II. Entire functions 

 

Maximum modulus 

 

The function  is called analytic at the point , if it has a 

continuous derivative in some area of this point. If the function  is analytic on 

all complex plane, then  is called an entire function. From Taylor`s theorem we 

can get 

                                                        

,                                              (2.1) 

convergence radius is . Therefore, the condition 

 

is hold. 

The value , the growth rate of which is one of the most 

important characteristics of the entire function , when , is called the 

maximum modulus in the circle of the radius .  

 Theorem 2.1 (Cauchy inequality).  For any  takes place the inequality  

.
 

 Proof. When  and , we have 

 

, 

and the last series is uniformly convergent on , because it is majored by the 

series 
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. 

 By integrating term by term , we will have 

. 

 Since 

 

then  

, 

and Cauchy's inequality is an obvious consequence of the latest inequality. 

 Theorem 2.2 (Liouville’s).  If for entire function  the condition  

                                              
,                           (2.2) 

is hold, then  is a polynomial.  

 Indeed, from Cauchy’s inequality, when the condition (2.2) takes place, we get 

. 

 Let’s approach  to  . When , we get . Hence, 

. 

 From Liouville's theorem follows, that if an entire function  is not a 

polynomial, then  when  is growing faster than any power .  

 The function  takes an important place in the theory of entire functions. 

Its exact calculating even for the simplest entire functions can cause the difficulties. 

However, usually, it is enough to be able to evaluate it from above and below.   

 Let's consider firstly the case of the polynomial of the power  
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. 

 In the circle  we have 

 

. 

 When , the sum in the square brackets tends to . Therefore, for each 

, you can specify , that when , the inequality  

                                      
                                     (2.3) 

is hold. 

Let`s consider the value  at any point , that located on the circle 

. For it . At this point, the inequality (2.3) also takes place, when . On 

the other hand, 

 

 

 

. 

Therefore, when , we obtain 

                                             
.                                (2.4) 

 Returning to (2.3), we conclude that this inequality is also true at the point of the 

circle , where  reaches its maximum . Therefore, 

                                             
.                              (2.5) 

On the other hand, the value  at the point  located on the circle  does 

not exceed . Hence, 
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.                                (2.6)        

From (2.5) and (2.6) it follows that  

, 

and since  is an arbitrary positive number, then 

. 

The resulting relation we’ll formulate as follows: the maximum modulus of the 

polynomial of the power  is asymptotically equal to the modulus of the leading term 

of the polynomial.  

 Now let's calculate the functions for  and . To distinguish 

them, let’s denote .  

 In each of these cases, we use the estimate of the modulus of the sum of the 

power series 

 

. 

So,  in the disc . But at the point , and . Therefore, 

at this point, the modulus of the exponential function reaches the maximum value. And 

                                                

.                                       (2.7) 
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The sum of the series on the right side of the last inequality is equal to 

. Therefore,  

. 

But at the point  

, 

i. e. 

                                      

.                         (2.8) 

Finally, . But at the 

point , .  

Therefore, 

                                        

.                         (2.9) 

 Now let's make sure that the functions  are 

increasing. For the first function it is obvious. For , it follows from the fact 

that  is increasing function, and  is decreasing function, so the difference 

 is increasing. To check if  increases, when , it is enough to 

find its derivative 

. 

Therefore,  is increasing, when  .  
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 Let . Then , when  and there exists 

, which we’ll denote as , such that . 

This value 
 
is called the maximum term of the series (2.1). From Cauchy’s 

inequality follows that . The last inequality is also called Cauchy’s 

inequality. In the other hand, for each , we have 

. 

So 

                                                  

 .                                           (2.10) 

Note that  when .  

 

Order and type of entire function 

 

The value 

                                                    
                                           (2.11) 

is called the order of the function, and if , the value of 

                                                     
                                              (2.12) 

it is called the type of entire function . It is said that the function of the order 

 has minimal, normal, maximum type, if  

correspondingly.  

 The formulas (2.11), (2.12) allow us using the formulas (2.7), (2.8) and (2.9) to 

find the order and type of the functions . Since 
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. 

Obviously, that  and therefore, the fraction on the right side of the 

last inequality approaching to . Let’s calculate 

, 

where the expression in parentheses tends to , when . Once agaon 

logarithmization will give 

, 

where the second term on the right side tends to , when . Therefore  

. 

 This means that for the function  we have  and .  

We propose to determine independently the order and type of the functions: 

a)  .    Answer: , ;  

b) .        Answer: ;  

c) .        Answer:  – uncertain.  

 In all examples the order of the entire function was equal to the integer number 

or . But there exists the functions of the fractional orders. For example, 

 . This function is entire, because  
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And so it is represented everywhere by the convergent power series 

. 

 and it is easy to check, that order  and 

type .  

 Let's show now that in the defined order and type of the entire function we can 

take  instead of .  

Theorem 2.3.  The next equalities take place 

                                                  
,     .            (2 .13) 

Proof. Let’s denote 

,    . 

 From the Cauchy’s inequality  follows that , . 

Next, if we assume that , then by definition of  we’ll get that 

 for each , when , that is . 

Therefore, from (2.10) we get 

, 

whence , when . From the last inequality it 

follows that , and due to arbitrariness of , we have . In the case, when 

, the inequality  is obvious. So, . 

 When  and  from the definition of , we have 

 for each , when  and from (2.10) we obtain  

. Hence, . Since  and  
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are the arbitrary numbers, then approaching  to 0 and  to 1, we get . When 

, the inequality is obvious, So, , and the theorem is proved. 

 The calculation of the order and type of entire function, using the definition, i. e. 

from the formulas (2.11) and (2.12), is quite time-consuming, because it is associated 

with finding the maximum of the modulus of each concrete function. Therefore, there 

is a natural desire to obtain the formulas for calculating the order and type of the entire 

function through the coefficients of the series (2.1). 

Theorem 2.4.  The next equalities are hold 

                                     

,   .                           (2 .14) 

 Proof. Let`s denote 

,     .  

From the first equality (2.13) we have that , when  for each 

, when . Then by definition of the , we get 

 

for all  and all . Let’s choose . Then we have that 

, when . It follows that . When  the last 

inequality is trivial.  

 Suppose now that . From the second equality (2.12) we have 
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  1 

1   1  1 

ln
lim

lnn n

n n

a






/

lim
n

n
n

n
a

e







ln
lim

lnn n

n n
k

a



/

lim
n

n
n

n
a

e







   expr r    

0   0r r   r

   expn n
na r r r r     

0n   0r r   1/
r n

 


  1/
/

n

na e n
 

 0n n k   

 

    expr r    0   0r r 

  expn
na r r  



65 

 

for all and . Let’s choose . Then 

, when . Whence it easily follows that . When 

, the inequality  is trivial.  

 Let's now prove the opposite inequalities  and . Suppose first that 

. Then from the definition of  we have , when  . 

Therefore 

, 

, 

, 

where . Since  and 

, then the maximum of the function  is reaches at the point 

, i. e.   

. 

According to the first equality (2.13), we get that . When  the inequality

is trivial. So, , and first equality (2.14) is proved.  
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Since  and , the maximum of the 

modulus of the function  is reached at the point  and 

. Hence, from (2.13) 

it follows, that . When  the inequality  is trivial. So, , and 

second equality (2.14) is proved.  

 Now consider the question about the derivative and zeros of an entire function. 

Let's formulate the following obvious statement: 1) if  is the entire function of 

order  , then the function , where  is the polynomial, has 

the order ; 2) if  is the entire function of the order , and type 

, then the function  has the type  and order .  

Theorem 2.5.  The function  and its derived  have the same orders 

and types.  

Proof. The functions  and  have the equal orders and types. 

Therefore, it is enough to show that functions  and  have same orders and 

types.  

Let , represented by the series (1.1), has the order . Then  

. 

According to the first of the formulas (2.14), the order of this function is equal to 

 

. 

 Let  now has the order  and type .  The order of the function  is 

equal to , and its type  is calculated by the second of the formulas (2.14) 
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. 

The theorem is proved. 

 Let’s remind that a point is called a zero of the function , if .  If

, and , then  is called a zero of the n-

th order of the function .  For example, consider the function 

.  From the series expansion we can see that  is a zero of the 1-st order. Now let`s 

consider the function , for which is obvious that  is a 

zero of the third order. 

 Let  is the sequence of the complex numbers, and 

.  Suppose that there exists  a finite , such that 

                                                        

  .                                               (2.15) 

The lower bound  of the set of numbers , that satisfy the condition (2.15), is called 

the convergence indicator of the sequence . If  is finite, then for each  

,    . 

If  does not exist, when the condition (2.15) is hold, then .  

 Let  be the entire function of the finite order  and  are its 

zeros, that differs from the beginning of the coordinates. We suppose, that  and 

each zero is written as many times in the sequence , which is its multiplicity.  

Theorem 2.6.  Let  be the entire function of the finite order  and 
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Proof. We suppose that  (otherwise we would divide  by the 

corresponding power of  and get the function of  order , which doen’t equal zero at 

the beginning of the coordinates and for which  are zeros). Denote 

. The function  has at least  zeros , in the circle 

. Then, by the well-known estimate 

, 

when n is  large enough, then we have 

. 

So, , where  is arbitrary number. Therefore, . 

 

Infinite products 

 

The expression  

                                  
                 (2.16) 

is called the infinite product and is denoted  . The expression 

 is called the partial product. It is said that the infinite product 

converges, if there exists .  Otherwise, it is called the divergent 

product. If it is convergent, then denote .  

 Necessary condition of convergence.  If the product is convergent, then 

.  
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 Indeed,  and it follows that .  

 Sufficient condition of convergence.  If , then the product (2.16) 

and the series  are convergent or divergent simultaneously.  

 Indeed, since in this case  is non-decreasing function of , then  is 

tending either to the finite limit or to . Further, from  we have 

.  These inequalities show 

that  and  are bounded or unbounded at the same time, and this 

completes the proof.  

 The product (2.16) is absolutely  convergent, if the product  

                                                                  

                                          (2.17) 

is convergent. The product is absolutely convergent if and only if the series  is 

convergent.  If the product (2.17) is divergent, then (2.16) is conditionally convergent.  

 Let's show that the absolutely convergent product is convergent. Let's denote 

. 

We have 

, 

so, . Let the product is absolutely convergent. Then there exists 

 
and, hence, the series  is convergent. But then 

the series

 

 is convergent too. Therefore, there exists .  
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Let's make sure that . Indeed, the series   is convergent and 

.  Therefore, the series  converges. Hence, the 

product 

 

tends to some finite limit. But this product is equal to . So, the limit of the product 

 is different from zero.  

 Note that the convergence of the product represented in the form  is 

equivalent to the convergence of the series .  

Now let's consider the functional infinite products 

                                                    

,                                          

(2.18) 

where   are  the functions defined in the domain , and  in .  

The product (2.18) is uniformly convergent in the domain , if it is convergent 

at every point . We have 

, 

then the product (2.18) is convergent in the domain . The product (2.18) is 

convergent to  at every point  and we write  

. 
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The product (2.18) is called uniformly convergent in the domain , if the 

sequence of partial products  converges in the domain . The 

infinite product is called uniformly convergent inside of the domain , if the sequence 

of partial products  converges uniformly inside the domain . 

A sufficient sign of the uniform convergence in the domain.  If in the domain 

 

, 

then in the domain  the product  (2.18) converges uniformly.  

Indeed,  

 

, 

therefore, the series  converges uniformly in , hence, 
 

converges uniformly in .  

 A sufficient sign of the uniform convergence in the domain.  Let  are the 

analytical functions in a simple connected domain . If the series  

                                                             

                                        (2.19) 

converges uniformly in , then the product (2.18) converges uniformly inside the 

domain .  

 Indeed, we have 

. 

And we get  
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The right part is the analytical function in , and therefore  is the analytical 

function in .  Next 

 

. 

Let  is some compact in .  The function  is bounded on the compact, i. e. 

. The series (1.19) converges uniformly on the compact , so 

. 

Hence, 

 

, 

that proves the uniform convergence (2.18) inside .  

 Until now, we assumed that  in .  Let's assume that  is a simple 

connected domain,  are the analytical functions in , which have the following 

property: whatever , there is a number , such that 

.  

 We assume that the product (2.18) converges in , if the product 

 converges, whatever the compact .  Then the function 

 can convert to zero at some points of the domain , at the point 

of such type at least one of the multipliers of the product will convert to zero.  
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 Then a sufficient sign of the uniform convergence in the domain  will be 

formulated as follows: if the series  converges 

uniformly  on the arbitrary compact , then the product will converge uniformly  

inside the domain .  

  

Decomposition of entire function into infinite product 

 

Let's firstly consider the method of constructing the entire function with the given 

zeros. Let's denote 

. 

These expressions are called the primary multipliers. Their behavior depends upon 

, when . 

 Lema 2.1.  The next inequalities are hold 

                                  
,                         (2.20) 

                                  

.                       (2.21) 

 Proof. We have 

 

, 

whence  
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 Now let's prove the second inequality. Let  . We have 

, 

. 

Therefore,  

. 

Whence

 

. 

 Theorem 2.7.  Let , and let the entire  are such that  

for the arbitrary  

. 

Then the product  

            

      (2.22) 

converges in all plane and defines the entire function , which has zeros at the 

points  and only in them.  

 Proof. Let ,  and , when . From the inequality (2.20) 

follows that  

,  
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so, the series  converges uniformly  in  and then the product 

 converges uniformly  in  to the analytical function in 

, that doesn’t equal zero. Then the product (2.22) also converges to the analytical 

function 
 
in  , moreover this function converts into zero only at the points 

, that lie in the circle of the radius . Since is an arbitrary number, so the theorem 

is proved. 

 Notice that we can take .  

 Theorem 2.8.  Let  is the entire function, are zeros (moreover each 

of them is written out as many times as its multiplicity shows), that differs  from the 

beginning of the coordinates. Let`s choose the integer , such that for the  arbitrary 

 the condition  

 

is hold. Then 

, 

where  is the entire function.  

 Proof. Let's form a product (2.22) and let it converges to . Denote 

, where  is the multiplicity of zero .  This is the entire 

function that is not converted anywhere to zero. Hence, 

 is the entire function. But then  

, 

and the theorem is proved.  
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 Let  is the entire function of the order ρ and  are its  zeros. 

And  is the convergence indicator of the sequence . According to the Theorem 

2.6, we have .  Let  is the smallest integer, that satisfies the condition 

                                                         

.                                             (2.23) 

Then 

 

for arbitrary . By the Theorem 1.8, we get 

                            

,          (2.24) 

where is the polynomial of  the degree . The expression  

                                  

                 (2.25) 

is called the canonical product.  

 Theorem 2.9.  The order of the canonical product (2.25) is equal to   and if  

                                                            

,                                            (2.26) 

then  is  the entire function of the order  of the finite type.  

 Proof. In (2.25) the integer  is associated with  by ratio . Let  

be the number that satisfies the conditions,  and .  This  

can be chosen very close to  and in the case (2.26) we will accept . By the Lemma 

2.1 we have 

, 

. 

From the last inequality it follows that 
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. 

So, for arbitrary  we have . Hence, we get 

                             

.                     (2.27) 

Therefore, the order of the function 
 

. But θ is very close to . Hence, 

 . By the Theorem 2.6 . Then .  

 In the case of (2.26) we will accept that  and then from (2.27) it is clear that 

 is the entire function of the order  of the finite type (the fact that it has the order 

 we have already proved earlier). 

 Let’s formulate without the proving the basic theorem on the decomposition of 

the entire function of the finite order into the infinite product.  

 Theorem 2.10 (Borel’s).  Let  be the entire function of the finite order ,

 are its zeros,  be the indicator of convergence of the sequence , is  

the smallest integer, that satisfies the condition 

. 

Then the representation (2.24) takes place, moreover .  

 Corollary 2.1.  If is not an integer, then . 

 

Control questions 

 

1. Formulate the Liouville's theorem. 

2. Formulate the definition of the order and the type of the function. 

3. Give the formulas for calculation of the order and type of the function using the 

coefficients of the series. 

4. What is the zero of the function? 

5. Which function is called an entire? 
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6. Formulate the definitions of the the maximum of the modulus and the maximum 

term of the entire function.  

7. Formulate a sufficient sign of the convergence of the numerical product. 

8. Formulate a sufficient sign of the uniform convergence of the functional infinite 

product in the domain. 

9. Formulate Borrell's theorem of the decomposition of the entire function of the 

finite order into the infinite product. 

 

Examples of problem solving 

 

1. Find the order and type of the function . 

We have  

, 

. 

 

2. Do the decomposition of the function  into the infinite product.  

Zeros of this function are .  The product of 

the multipliers, that correspond to zeros and , is equal to 

. 

Therefore  
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From the equality , when , we obtain , i. e. 

 .  Hence,  

. 

The function  is odd, so   and .  So,  and 

. 

3. Investigate the convergence of the product . 

Let's consider the corresponding series .  Since , and the 

series  converges as an infinitely decreasing geometric progression, hence, the 

product will be convergent. 

4. Investigate the convergence of the product . Let’s apply the 

sign of D'Alembert to the corresponding series
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So, the series and, accordingly, the product converges for . 
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Tasks for independent work 

 

1. Using the formulas (2.13), determine the orders and types of the functions (

): 

a) . Answer: ;  

b) . Answer: ;  

c) . Answer: ;  

d) . Answer: ;  

e) . Answer: ;  

f) . Answer: ;  

g) . Answer: .  

 

2. Using the formulas (2.14), determine the orders and types of the functions:  

a) . Answer:  ;  

b) . Answer: ;  

c)  . Answer:  ;  

d) . Answer:  ;  

e) . Answer:  ;  

f) . Answer: ;  
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g) . Answer: .  

 

3. Investigate the following  infinite products for convergence:  

a) .  Answer: it converges; 

b) .  Answer: it converges; 

c) .  Answer: it converges; 

d) . Answer: it diverges;  

e) .  Answer: it converges; 

f) .  Answer: it converges when ;  

g) .  Answer: it converges; 

h) .  Answer: it converges. 

 

4.  Investigate for absolute convergence: 

a) .  Answer: it conditionally converges;  

b) .  Answer: it conditionally converges; 
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        c) .  Answer: it converges absolutely, when  and  

conditionally converges, when ;  

        d) . Answer: it conditionally converges;  

        e) . Answer: it diverges;  

        f) . Answer: it diverges;  

        g) . Answer: it conditionally converges;  

       h) . Answer: it conditionally converges.  

 

5. Find the areas of convergence of products: 

a)  .   Answer: ;  

b) .   Answer: ;  

c) .   Answer: ;  

d) .   Answer: ;  

e) .   Answer: ;  
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f) .   Answer: ;  

g) .   Answer:  ;  

h) .   Answer: .  

 

6.  Prove that following decompositions take place: 

a)  ; 

b) ; 

c) c) 

d) . 
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Chapter III. Dirichlet Series 

 

Convergence area, convergence abscissas 

 

 Let  be the increasing to the  sequence of the positive numbers and 

, and  be the sequence of complex numbers. The series 

                                 

                           (3.1) 

is called the Dirichlet series (or exponent series), the numbers   are its indicators, and 

 – the coefficients. 

 If in Taylor's series 

                                              

,                                     (3.2) 

then we’ll obtain the Dirichlet series 

                                                

                          (3. ) 

. Thus, the Dirichlet series is a generalization of the Taylor series.  

                                              

 .                                (3.3) 

The function  is called the Riemann function and plays an important role in the 

number theory.  

 To find the radius R of convergence of the series (3.2), the Cauchy-Hadamar 

formula is used 

                                                       
   .                                              (3.4) 
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If , then on each compact from the circle  the series (3.2) is 

convergent absolutely and uniformly. It follows that the series (3. ) is convergent 

absolutely and uniformly on each compact from the half-plane . From 

(3.4) it follows that 

. 

The information about the series (3. ) cannot be automatically transferred to the series 

(3.1) with the arbitrary indicators. In generally, the series (3.1) may be convergent in 

some half-plane, but not absolutly convergent.  

 Let`s  and  be the arbitrary values, and . Then 

 and  

 

 

                                         

 .                             (3.5) 

The formula (3.5) is called the Abel transformation and with its help we will prove the 

following theorem, which is the analogous to the well-known Abel lemma for the 

power series. 

 Theorem 3.1.  If the Dirichlet series (3.1) is convergent at the point , then 

it is convergent in the half-plane  and uniformly convergent in the 

closed angle 

                                           
 .                         (3.6) 

 Proof. Using the formula (3.5), we obtain 
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.           (3.7) 

 

Let .  If , then 

 

. 

 Since the series (3.1) is convergent at the point , then for each  there 

exists , such that  

 

 

 

when .  Therefore, from (3.7) we get 

 

 

                       

 .                        (3.8) 

From the estimate (3.8) it immediately follows that the series (3.1) is convergent in 

each point of the half-plane .  If  belongs to the angle (3.6), then 

 and from (1.8) it follows that 
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that is, in the angle (3.6) the series (3.1) is uniformly convergent. The Theorem 3.1 is 

proved. 

 From the Theorem 3.1 it follows: if the series (1.1) converges at the point , 

then its sum  is an analytical function in the half-plane . 

  From this theorem it follows, that the series (3.1) either is convergent 

everywhere in  or it is divergent everywhere in , or it is convergent in some half-

plane  and divergent in the half-plane . In the last сase, the 

number  is called the abscissa of convergence of the series (3.1), the half-plane 

 is called the half-plane of convergence, the line  – the line 

of convergence. If the Dirichlet series converges in , then we think that  and 

if it does not converge anywhere, then we think that . 

Suppose that the series (3.1) at the point  is absolutely convergent, that is, 

. 

Then, if , then  and, consequently, the series (3.1) is 

absolutely and uniformly convergent in the half-plane . It follows that 

the series (3.1) is absolutely convergent everywhere in , or at anyone point in  it 

is not absolutely convergent, or there exists a number  such that the series 

converges absolutely in the half-plane  and does not converge 

absolutely at every point of the half-plane . This number   is called 

the abscissa of the absolutely convergence of the Dirichlet series (3.1). If the Dirichlet 

series is absolutely convergent in , then ,  and if it is not absolutely  

convergent anywhere, then . 

 As noted above, not always . For example, for the series 

                                                         

                                   (3.9) 
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we have  1 and =0. There are the Dirichlet series for which  and 

. For examle,  

                                                   

 .                           (3.10) 

 In fact, let . Then . To apply the Leibniz 

sign, it is enough to show that the inequality is true for sufficiently large  

 

 

, 

and it’s true, because 

, 

. 

So the series (3.10) converges at each point  and by the Theorem3.1 it 

converges everywhere in .  However  

 

for each , that is . 

 Note that . If , then for arbitrary  in each half-plane 

 the series  (1.1) is uniformly  convergent. The upper bound of the 

numbers , such that the series (3.1) is uniformly  convergent in the half-plane 

 is called the abscissa 
 
of  uniformly convergence . Then 
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 Let's determine the abscissa of convergence. Denote 
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,                             (3.11) 

and for  and  let  

                                          

.                               (3.12) 

Theorem 3.2.  For each Dirichlet series (3.1) . If , 

then and . 

Proof. The inequality  is obvious. Let . Then for each  

there exists  the increasing sequence of natural numbers , such that 

, 

i.e. 

 

for all . Hence, due to the arbitrariness of , it follows that the series (3.1) 

converges at each point  and, hence,  .  For  this inequality 

is obvious. 

 If , then for each   we have 

, 

i.e. 

 

for all sufficiently  large .  Therefore, for such  the next inequality 

 

                     

            (3.13) 
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is hold for each  and all . Since , then it 

follows that the series (3.1) is absolutely convergent at the point ,  that is 

. For   this inequality is obvious. 

 Let, finally,  and . Since the series (3.1) converges at the 

point , then there exists , such that for all  

, 

i.e.  

 

 

for each  and all . Then it follows, as from (1.13), that 

 and due to the arbitrariness of , . For  this 

inequality is obvious. The theorem is proved. 

 Let's denote 

                                                         

 .                                          (3.14) 

 Corollary 3.1.  For each Dirichlet series (3.1) the inequalities  

and  are hold.  

 In fact, let in the Theorem 3.1   and . Then 

 

and, therefore, the estimates   and  are correct, that is, 

taking into account arbitrariness of , we have  and . 
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 The examples of series (3.9) and (3.10) indicate that these estimates are exact. 

For the first of these series we get that  and for the second 

series we have . 

 Corollary 3.2. If 

, 

then   and . 

 In fact, let in the Theorem 3.1 .  Then  

 

and, hence,   and , due to the arbitrariness 

of , we get the necessary inequalities. 

 Example of a series  

 

indicates the exactness of the 2 mentioned estimates in the corollary, where 

. 

 

Corollory 3. 3. If 

, 

then and  and
 

. 

 In fact, if in the Theorem 1.3 we take  and , then 

 

and, consequently,   and , then due to the 

arbitrariness of  we get the necessary inequalities. 
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 The example of the series 

 

indicates the exactness of the 2 mentioned estimates in the corollary. Here  

. 

 Using the Corollaries of 3.1-3.3, we will prove such a theorem. 

 Theorem 3.3.  Let  or . Then .  

 Proof. If , then the conclusion of the theorem follows from the 

Corollary 3.1. If , then either 1) , or 

2) , or , where  satisfies the  

condition 1), and  satisfies the condition 2). In the first two cases, the correctness 

of the theorem follows from the corollaries 3.2 and 3.3. In the third case, we’ll write 

the series (3.1) in the form of the sum 

                                                               

,                                     (3.15) 

where  and  correspond to the coefficients  and . By the colloraries 3.2 and 

3.3, we have 

,     , 

where   and  are the abscissas of convergence and the absolute 

convergence of the corresponding series from (3.15). Note also, that 

, a . 

It follows that 

 

and  
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The Theorem 3.3 is completely proved. 
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Analogues of Cauchy’s inequality 

 

 If the function  is given by the power series (3.2) and is analytical in the circle 

, then, as it is known from the general course of Complex Analysis, 

 for all  and , 
.
 

 Let the Dirichlet series (3.1) has an absolute abscissa  of 

convergence. For  we denote 

. 

 Theorem 3.4. For all  and  the inequality  

 

is hold. 

 Proof. This inequality easily follows from the such true equality for all  

and : 

                                         

.                            (3.16) 

Let's prove this equality. We have 

. 

The last series is uniformly convergent relatively to , it can be integrated term by 

term and therefore, using the relations 
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we get  

, 

That is, we obtain the equality (3.16). 

 Let’s denote 

 . 

 Theorem 3.5.  For all and  the inequality 

 

is true. 

 Proof. Consider the Dirichlet series  

, 

where  is an arbitrary number, .  Then for each  

 

, 

where  and . On the other hand, for  and  
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. 

Therefore, for all  

. 

Since , then . So, 

 

. 

 Let's return to (3.2) and denote 

. 

If  (consequently, ), then by the Theorem 3.5 we easily obtain the 

inequality  

. 

 

Three-lines theorem 

 

Firstly, we will prove one theorem of  Phragmen-Lindelöf type. 

Theorem 3.6.  If the function  is analytical and bounded  in the closed strip, 

 and the inequalities  are hold  on the 

lines  , then  for all .  

Proof. Let’s consider the analytical function in this strip  

. 

Then  
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,        (3.17) 

whence it follows that on the lines  the inequalities 

,      

are hold. 

From (3.17) and the boundness of the function  it follows that  

 

when  in the strip . Therefore, there exists the number  

, such that inequality 

                                              
                                     (3.18) 

is true when  and   . 

This inequality is correct at the edge of the rectangle 

 and, therefore, in this rectangle and in the strip 

. From (3.17) and (3.18) for each   from this strip we obtain 

. 

Then, due to the arbitrariness of , we get the inequality  for each 

.  The Theorem 3.6 is proved. 

 The Theorem 3.7 is called the three-lines theorem and it is the generalization of 

Hadamard’s three-circles for the entire functions.   

 Theorem 3.7.  Let . If  is the analytical function in the strip 

,  is bounded in it and doesn’t equal  zero, then 

                  
.          (3.19) 

 Proof. Let . Then the function  is analytical and bounded 

in the strip .  At the edge of the strip the inequalities  
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are hold.  

Therefore, by the Theorem 3.6 for  

, 

i.e. 

. 

Let's choose  so that  

, 

i.e.   

. 

Then from the last inequality we get 

, 

whence we easily get the inequality (3.19). 

 Corollary 3.4. Let the Dirichlet series (3.1) have the abscissa  of 

convergence. Then the function  is convex on , hence, it is continuous  

and has continuous derivative except, possibly, the countable number of points, in 

which there exists the one-sided derivatives, moreover the left-sided derivative dos not 

exceed the right-sided derivative. 

 Indeed, since the series (3.1) converges absolutely in , then its sum 

 is analytical and bounded in each vertical strip from this half-plane, and by the 

Theorem 3.7 for each three numbers  , the inequality (3.19) is 

true, from which the inequality  
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follows. So,  is the convex function. The rest of the conclusions of the 

corollary follow from the convexity.  

 From the Theorem 3.7, using a replacement  (hence, ), we easily 

get the correctness of such a corollary.  

 Corollary 3.5 (Hadamar's three-circle theorem).  Let the power series (3.2) 

have a convergence radius . Then for  

. 

It follows that the function  is convex according the logarithm 

(logarithmically convex). 

  

Maximum term and central index 

 

Let the Dirichlet series (3.1) have the convergence abscissa . 

Then for each  we have 
 
and therefore there exists 

the maximum term  

 

of the series (3.1). The value 

 

is called the central index of the series (3.1), and 
 
is its central indicator. The 

functions 
 
and  are piecawise-constant on , moreover 

 
is 

only integers. 

 Remark. The definition shows that the maximum term and the central index can 

be defined for any sequence 
 
that tends to 0, when  for each 

, where A is a certain number from .  

 Let  be an arbitrary number. Then  
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, 

i.e. 

                                            
.                                (3.20) 

Similarly, 

 

, 

i.e.  

                                         
 .                               (3.21) 

From (3.20) and (3.21) we obtain 

. 

It follows that the functions 
 

and  are non-decreasing. Our 

considerations are correct if . Therefore, if  is the interval of constancy 

of the function , then when  we receive 

. 

 Since at each finite interval the function  has a finite number of breakpoints, 

we get the equality 

                                          

                                    (3.22) 
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 Suppose that the power series  has a convergence radius 

. Then for each 
 

there exists the maximum term 

 of this series. The value 

 

is called the central index of the series (3.2). If we make a replacement  (hence, 

), then taking into account the correct equality in this case , from 

(3.22) we easily get the equality 

. 

 Let's denote 

. 

Theorem 3.8.  If the sequence  is non-decreasing, then 

 for all . If  for some , then  and 

  for all   and this .  
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, 

i.e. . 

 If  for some  and , then similarly for   we get  

 

, 

and for  

. 

So, 
 
and  for all . 

 
 

 We will submit a geometric interpretation of the maximum term and the central 

index using Newton's diagram. Let's construct this diagram first for the simple case, 

where the Dirichlet series is reduced to an exponential polynomial  

. 

 On the plane  we’ll note the points . From the point  

we’ll draw a vertically down ray and rotate it around the point  (counterclockwise) 

until it touches the point with . Several such points may lie on the final 

placement of the ray. The farthest point from   we’ll denote by , and the segment 

  we’ll denote by . Now from the point in the direction of  we draw a 

ray again, rotate it around  to the touch with  and the farthest point from 

 from the final placement of this ray denote by , and denote the segment 

 by . This process is finite and we will move on to the segment 
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. Finally, from the point  we will draw a vertically up the ray . 

As a result, we will get a convex broken , the links of which are the segments 

 and the ray . It is called the Newton's diagram and has such a property 

that none of the points   lies below it.  

 Let's construct the Newton’s diagram for the Dirichlet series. Among the 

coefficients  may occur such that equals zero, but we think that it does not reduce to 

the exponential polynomial. In fact, as the remark shows, we are constructing the 

Newton's diagram for a functional sequence . We think that .   

 Let   be determined by the equality (3.14) and . By the Theorem 

3.3 . Denote by  the angel between rays  and .  

Then from (3.14) we receive 

. 

 As above, let  (in the case, when , we think that 

), and the ray  with the beginning in  rotates from the vertical down 

the placement counterclockwise until one of three situations arises:  

1) the ray  will touches any point from , it has a finite number of points 

, and all the rest points lie higher ;  

2) on the ray  the infinite number of points from 
 
lies, and under it 

there are no such points;  

3) there are no points from  on , but during the further rotation under 

 will be the infinite number of such points.  

 In the cases 2) and 3) the process of constructing the Newton’s diagram is 

completed and this final placement of the ray  we denote by . It is clear that the 

angle of inclination of is equal to .  
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 In the first case, the most distant from the point  the point  from the final 

placement  we’ll denote by  and let . From the point  as a 

continuation of , we will draw a ray  and turn it around again until one of the 

situations described above arises. In the last two, the process is completed and by  

we will denote the broken, consisting of  and the final placement of the ray . In the 

first situation, the most distant from  point , from the final placement , 

we’ll denote by  and let it .  

 Continuing this process, we will construct a convex broken , which will either 

consist of the infinite number of edges , such that the angle  between  and the 

ray  increases to , when  increases or consists  of a finite 

number of edges  and a ray  that forms an angle  with a ray

.  

 Let  be the equation of this Newton’s diagram . Then the Dirichlet  

series 

                                       

                         (3.23) 

is called the Newton`s majorant of the Dirichlet series. The series (3.11) can be formal. 

It is clear, that  and .  

 Suppose at first that Newton's diagram consists of a finite number of edges and 

draw a line  with an angular coefficient  so that it touches the broken , but 

does not cross it. This line  in common can have with  either one point  or the 

segment . Let's show that is  is the central index of 

the Dirichlet series and the series (3.23). Indeed, if , then 
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, 

whence it follows the inequality 

                                          
.                           (3.24) 

The same inequality is hold for Newton's majorant. If , then 

, 

whence it again follows (3.24) and the corresponding analogue for Newton's majorants. 

From these inequalities we see that the term 
 
 is the maximum term 

of the Dirichlet series, and   is the maximum term of the series 

(3.23). But . Therefore, the series (3.1) and the series (3.24) have 

the same maximum terms and central indixes.   

 Since the equation of the line  with the angular coefficient , passing through 

the poin t is  

, 

then, substituting , we see that  is a distance from the point of intersection 

 with the axis  to 0.  

 Let’s consider the case when Newton's diagram includes a ray 
 
with an 

angular coefficient . Its equation looks is . Therefore, 

 for all . It follows that for all 

 and all  

, 

i. e. the maximum term is a bounded function. 
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 This cannot be said about the central index. For the series 

 

we get 
 
and  for all , and for the series  

 

we have  for all , but 

. 

 In fact, the function  reaches its maximum at the point 

 , .  

 

Estimates of the maximum modulus through the maximum term 

 

 From the Cauchy’s inequality (Theorem 3.4) it follows that 

. Therefore, we need the estimates  through  from above. 

 Theorem 3.9.  Let  be an arbitrary number, and  , 

when , and  be an arbitrary number, when  . If  (see 

3.15), then for all  

                                        

 .                            (3.25) 

 Proof. We can assume that all  and for  denote  

. 
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Then by the Theorem 3.3 . We accept , if , 

and , if  in the case .  Then 

 

for all   and 

 

                             

 .                (3.26) 

(if , then there is no third term in (3.26)).  

 If , then

 

 

. 

If , then . Finally, if , then 

. Therefore, from the inequality 

(3.26) we obtain   

 

. 
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. 

The Theorem 3.8. is proved. 

 Corollary 3.6. If  and  , then for each  and all 

 

                                                     
.                                    (3.27) 

 Indeed, let's take   and . Then by the Theorem 3.9,  

                                      

                      (3.28) 

for all . But  

 

for all , so from (3.28) we get (3.27). 

Corollary 3.7. If  and 

                                                        

,                                      (3.29) 

then for any   and all   

                                                

.                                   (3.30) 

 In fact, if we choose  and , then by the Theorem 3.2 

. 

 Since  for the entire Dirichlet series, then it follows 

(3.30). 
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 Corollary 3.8. Let  and  for all 

. Let the function  be inverse to  and the function  be associated with b by 

Newton.  If  

                                                    

,                               (3.31) 

then for each   and all  

                                                    

 .                              (3.32) 

In fact,  and from (3.31) follows (3.29), when . 

Therefore, from (3.30) follows (3.32).  

 Consider the case, when  (the general case  is reduced to the case 

 of the replacement with  by  ). In this case the maximum term can be 

the bounded function on . 

 In order that  for all , it is necessary and sufficient that 

 
for all .  Indeed, if , then  for all  

and . Tending , we get that . Conversely, if , then 

 for all  and , i. e. .  

 In the case, when  for all , the estimate  is as follows: 

 

and depends only on the density of indicators. Therefore, we consider that 

                                                      
 .                                                 (3.33) 

 On the other hand, if , then in the Theorem 3.9 we can take only , 

and therefore, if  is an arbitrary number and  
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,                                 (3.34)        

then for all  

                                       

 .                         (3.35) 

If  , then (3.34) is hold only, when  

, 

and this is possible from the point of view of (3.33). The condition (3.34) isn’t hold in 

the case .  Therefore, there remains the case .  In order that the condition (3.34) 

is hold, it is necessary that 

.                                        (3.36) 

 Corollary 3.9. If  and the condition (3.36) is hold, then for each  

and all  

       

 .                               (3.37) 

 In fact, if we take , then from (3.36) we will have , that 

is, (3.34) is hold and hence, (3.35) is hold, when .  Since due to (3.33) 

 takes place, then from (3.35) follows (3.37). 

 Theorem 3.10. Let  and the sequence satisfies the condition  

       

,                                        (3.38) 

where  is  the positive continuous decreasing to 0 on  function, such that the 

function . Then for each  there exists the constant 

, such that for all  
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.        (3.39)       

 Proof. Let   is the counting function of the sequence  . Then 

the condition (3.38) is equivalent to the condition 

 

and, hence, for each , when  the inequality is correct, 

where . Taking the Stiltiès integral and integrating it by parts, we obtain 

 

 

                                 

                       

(3.40) 

where . Since the function  is decreasing on , 

when , then  

, 

such that , when .  Since is non-decreasing, than   
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,                  (3.41) 

and 

 

                

.      

(3.42) 

From the inequalities (3.40)-(3.41), when , we obtain 

, 

whence, due to the fact that , i. e.  , we 

get (3.39) with the constant .  

 Theorem 3.11. Let  and  for all . If 

                                                

,                               (3.43) 

then for each  there exists , such  that for all  

         

. 

 Proof. We have that   and from (3.43) it follows 

that , when  and 

, when .  Therefore, if we choose 
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then, when , we will have 

 

 

 

, 

therefore, we get (3.44) with some constant . 

 

Growth of entire Dirichlet series 

 

 The most used characteristics of the growth of Dirichlet series is the -order  

, 

and -type (when )  

. 

Theorem 3.12.  If either , or , when , 

then  

                                                      

,                                        (3.45)        

and if  , when , then 
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.                                 (3.46) 

 Proof. Let  and . Then 

, and . In order that 

, when , it is necessary and sufficient, that 

, when . It follows that 

                                 
                  (3.47) 

and 

               
.     (3.48) 

 For example, we’ll prove (3.48). If , then  for 

each  and all . Therefore 

                                              

                               (3.49) 

that is, , due to arbitrariness of , we get the inequality , which is obvious 

when . Further, if , then for each  and for all  (3.49) is 

hold, therefore  for all , that is, . Due to 

arbitrariness of , we get the inequality , which is obvious if  .  So, 

. 

 The proof of the equality (3.47) is similar. 

 If , when , then by the Corollary 3.6 from the Theorem 3.9 

and by the Cauchy’s inequality  we get 
 
for each  and 

all . Therefore 
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, 

whence, taking into account the arbitrariness of , we have the equality , and 

from (3.48) follows (3.46). 

 Suppose now, that . Then for each  and all  the 

inequality  is hold and from the condition 

 it follows that 

. 

Therefore, by the Corollary 3.8 from the Theorem 3.9  for 

each  and all . By the Corollary 3.7 of this theorem, the same inequality 

is hold, when , , and from it follows the equality , 

which together with (3.47) gives (3.45). The theorem is proved. 

 For the entire function  let .  

The values 

 

and 

, 

are called  the order and type  of the function  accordingly. 

 Corollary 3.10 (Hadamar's theorem).  The order and type of the entire function 

are calculated by the formulas 
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and 

. 

 Let's retutn to the Dirichlet's series. The values  

 

are called the logarithmic -order and -type respectively. It's easy to see that for 

each entire Dirichlet series . Therefore, in the definition of , it is enough to 

require that .  

 Theorem 3.13.  If either , or , then 

                                             

,                                  (3.50) 

and if  and either , or , when 

, then 

                                  

.                  (3.51) 

 Proof. Let’s choose the function , such that  for all 

sufficiently large , where and  are positive constants and  . Then 

, 

 

for all sufficiently large x. In order that , it is necessary and 

sufficient that 
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. 

Using the same method as when proving the Theorem 3.11, we obtain  

                              

                     (3.52) 

and if  

                  

.        (3.53) 

 Suppose now that . Then for each  and all 

sufficiently large . From the condition 

 

it follows that , for each . Therefore 

, 

and, using the Cauchy’s inequality and the Corollary 3.8 from the Theorem 3.9, as 

when proving the Theorem 3.11, we get the equality . From (3.52) it follows 

(3.50).  If the condition 

 

is hold, it is enough instead of the Collorary 3.8 to use the Corollary 3.7 from the 

Theorem 3.9. 

 The proof of equality  is similar.  

 The most flexible growth scale of entire Dirichlet series is characterized by the 

generalized orders. Denote by the class of continuous non-decreasing functions , 

such that , when , , when  and the function  
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increases to  on . We’ll say that , if  and 

, when , further , if  and 

, when ; finally , if  and 

, when . It's easy to see that . 

Functions  are called the slow-growing, and from  are called very slow-

growing.  

 Let ,  be any function defined on . The value 

 

is called the generalized order of the function . If we take , then 

we obtain the definition of the generalized order  of  entire 

Dirichlet series.  

Denote  

. 

Imposing certain restrictions on the functions  and , we can find the 

conditions for  or , under which .  

Theorem 3.14.  Let  and such that for each  

                                       

 ,                           (3.54) 

where  is the number larger, than . If either  

, or for each  and some  
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 ,                        (3.55) 

then .  

 Proof. Let . Then  for each 

 
and all . Therefore, by the Cauchy’s inequality 

 for all  and . When 

, hence 

 

i.e.  

. 

Since  and  is an arbitrary number, then from the last inequality we get the  

inequality , which is obvious if .  

 Suppose . Then . If we take 

, then given the growth of the function 

 

for 

, we’ll get 
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 Note that if  and for  
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where  is positive, continuous and increasing to  function on , then 

, when  , and since , 

then  

                                             

.                              (3.58) 

In order that for all  

, 

it necessary and sufficient, that 

. 

 Using this statement, from (3.56) we get the inequality 

, 

whence, due to the conditions  and (3.54), we get the inequality .  

Finally, given (3.36)  with , the condition (3.55) is equivalent to 

the condition (3.36) . By the Collorary 3.8 from the Theorem 3.9 

                               
.                     (3.59) 

 The relation (3.59) by the Collorary 3.7 from the Theorem 3.9 is hold also if 

.  From it, by the condition , the inequality 

 follows, which is impossible. The equality 

 is proved.  
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, 

then the condition (3.54) takes place, if . 

 Rematk 2. If  and , when  for each 

 ,
 
then (3.54) is hold and (3.55) can be replaced by a condition 

                                          

.                         (3.60) 

 Indeed, since , then , when , because 

if  

 

for some increasing to  sequence , then we would 

have , that is impossible.  

 Further, the condition , when  is an equivalent 

to the condition , and therefore for each  we have  
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It follows that 

 

for each and all . Therefore, the condition (3. 54) is hold. 

 Further,  

, 

whence the equivalence of the conditions (3.60) and (3.55) follows.  

 

Growth of Dirichlet series, absolutely convergent in the half-plane 

 

 Let the Dirichlet series (3.1) now have a zero abscissa of absolute convergence. 

By -order and -type of such Dirichlet series will’ll call  

 

and 

, 

and the logarithmic -order and -type we’ll call 

 

and 

. 

 The logarithmic -order and -type are often called simply as order and type.  
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 Theorem 3.15.  If either , or , 

then 

                                                     

,                                (3.61) 

and if either r , or  , then   

                                   
 .        (3.62) 

 

Proof. Choose , where  and  are positive constants. Then 

,  

, 

. 

In order that , it is necessary and sufficient that 

. 

Using the same method as when proving the Theorem 3.12, we have  

                               

 ,                      (3.63) 

and 

  .    (3.64) 
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If , then (3.36) is hold with  and by the Collorary 3.9 

from the Theorem 3.9 we have (3.37), whence given the Cauchy’s inequality easily 

follows .  If , then from the same corollary follows the 

equality . 

 Further, if  , then  

, 

. The same inequality is true, if  and .  

Therefore,  by the Theorem 2.4 for each  we receive 

 

                        
,                  (3.65) 

where   is the positive number. It follows that 

, 

where is arbitrary number, . From the last relations and Cauchy’s 

inequality, due to the arbitrariness of , it easily follows that , and therefore 

from (3.63) we get (3.61).  If we take  and , then from (3.65) we’ll 

get , that is, due to the arbitrariness of  and  the inequality , the 

equality  takes place. Therefore, from (3.64) we get (3.62). Theorem 3.15 is 

proved. 

        For the analytic in the circle  function  the values 
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and 

 

are called the order and type accordingly. From the Theorem 2.8 such a corollary easily 

follows. 

 Corollary 3.11.  The order and type of analytic in the circle function are calculated 

by the formulas 

 

and 

. 

 Theorem 3.16.  If either , or 

, then 

. 

 Theorem 3.17.  If  , then 

. 

 At the end of this chapter, we’ll give two theorems about the generalized orders 

of completely converging in the half-plane Dirichlet series. 

 Let . The value 

                                            

                                  (3.66) 

is called the generalized order of the Dirichlet series absolutely convergent in the half-

plane. 
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 Theorema 3.18.  Let the functions 𝛼 ∈ 𝐿  and  𝛽 ∈ 𝐿  satisfy the conditions 

                                       

                       (3.67) 

and 

                                  

                 (3.68) 

for each . Let the Dirichlet series (3.1) has the abscissa  of absolute 

convergence. If  either , or 

, 

then 

. 

 The conditions (3.67) and (3.68) satisfy, for example, the functions 

 and .  

 Theorem 3.19.  Let the functions 𝛼 ∈ 𝐿  and  𝛽 ∈ 𝐿  for each 
 
satisfy 

the conditions 

                                           

                     (3.69) 

and 

                              

 ,                   (3.70) 

and the Dirichlet series (3.1) has an abscissa  of absolute convergence. If either
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. 

 Conditions (3.69) and (3.70) satisfy, for example, the functions  and 

.  

 

Convergence classes 

 

We will get a connection between the growth of the maximum modulus and the 

behavior of the coefficients in terms of convergence classes. 

 

Hardy's inequality 

 

Let ,  and  be the positive function on , 

. Let  be  the sequence of the positive numbers,  be the 

sequence of the numbers from . Then 

. 

The well-known Hardy’s inequality we’ll get from such a theorem. 

 Theorem 3.20.  If the function  is convex on , and the sequence  

is positive and non-increasing, then for each  

                                              

 .                        (3.71) 
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Since , and the function  is convex, then 

, 

whence  

. 

So, taking into account the equality , we have 

 

 

 

                                    
.             (3.72) 

 Let’s consider the function  on , where  is any 

non negative number. This function has a unique minimal point , 

and . It follows that for all  and  the  inequality 

 is true. Therefore, from (3.2) we have 
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, 

and since the sequence  is non-increasing, then when  
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is hold.  

By the definition  and the Holder's inequality 

, 

we get 

 

. 

If we divide the inequality by the last multiplier and raise it to the power , we’ll get 

the inequality (3.71) for , and due to the arbitrariness of , the inequality (3.71) 

is proved for all  . 

 Corollary 3.12.  Let  and . Then  

                                                        

 .                               (3.73) 

 The inequality (3.73) is called the Hardy's equality and follows from (3.71), if 

and .  

 

Dirichlet series of finite -order or finite logarithmic -order 
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 Let the entire function , represented by the series , 

have the finite order  and . The function  belongs 

to the convergence class, if  

                                                   

.                                           (3.74) 

In 1923 G. Valiron proved that if  belongs to the convergence class, then 

                                                               

.                                       (3.75) 

The analogue of the ratio (3.74) for the entire Dirichlet series of the finite -order 

 is the ratio 

                                                  

 .                                      (3.76) 

In order to find the conditions for the coefficients of Dirichlet series, at which 

the ratio (3.76) and its analogues for the Dirichlet series, completely convergent in the 

half-plane , both the finite -order and the finite logarithmic -order, 

are hold, we first prove such a theorem.  

Theorem 3.21.  Let the series (3.1) have the abscissa   

of absolute convergence, where  is defined by the equality (3.14).  Let  be  

its maximum term, and  are the coefficients of Newton's majorant. Let  be the 

positive continuous non-decreasing function on , such that integrals 

                                                      

                                           (3.77) 

are convergent. Then, in order that 

                                                     

,                                           (3.78) 
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it is necessary and sufficient that 

                                            

,                             (3.79) 

where  

. 

 Proof. The Dirichlet series (3.1) and its Newton’s majorant (3.11) have the same 

maximum terms  and the central indexes 

and   for all .  

 Suppose first that the Newton's diagram of the series (3.1) consists of the infinite 

number of edges. From the construction of the Newton’s diagram, it is clear that the 

angular coefficients of these edges are  

. 

Since , the sequence  increases to . Without lost the generality, we 

can assume that . Then  and again without lost the generality, 

we can assume that , because otherwise we can properly presesce the function 

.  Using the equality (3.10), we have 
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is decreasing to 0 function. By the Theorem 3.8 it follows, that 

 

              

,      (3.80) 

where 

. 

Denote  . Then  and  

 

, 

because  is the decreasing function. So, the function  is convex 

on .  

 Further 
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i.e. 
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 Therefore, by the Theorem 3.1,  and  we obtain 

. 

On the other hand  and since the function  is descreasing, then 

. 

Therefore, from (3.80) it follows that (3.78) is hold if and only if (3.79) is hold. The 

Theorem 3.21 in the case of the infinite number of edges in Newton's majorante is 

proved. 

 Suppose that the diagram includes the  ray , of course, with an angular 

coefficient . Then, on the one hand, the maximum term is bounded and, due to 

(3.77), (3.78) is hold, and on the other hand, and (3.79) is hold.  The Theorem 3.21 is 

completly proved.  

 Using the connections between the maximum modulus and the maximum term, 

we can find the conditions for the sequence , under which in (3.78) we can  put 

instead of .  

 Corollary 3.13.  Let the entire Dirichlet series (3.1) have the finite -order 

 and , when . Then, in order that the relation (3.76) to hold, 

it is necessary and in the case, when the sequence  is nondecreasing  it is 

sufficient, that 

                                                    

.                             (3.82) 

 Indeed, it follows from the condition 
 
that , and 

by the Corollary 3.6 from the Theorem 3.9, the inequality (3.32) takes place. From 

(3.32) and the Cauchy’s inequality follow, that (3.76) is hold if and only if 

   , 2f x B x p  1, 1n n  

     0
1 1 10

1 1

1 1
ln 4n n n n n

nn nn

B B
a

 

    


  

 

 
    

 
 

0
10

1 1
ln n

n na



 B

     0
1 1 10

1 1

1 1
lnn n n n n

nn nn

B B
a

 

    


  

 

 
    

 
 

 ;NP 

0 A 

 n

 ln   ln M 

R

0R   ln nn O  n

  n F

  /
1

1

R n

n n n

n

a
 

 






  

   ln nn O n  0  



133 

 

                                                       

,                                  (3.83) 

i. e. (3.78) is hold with . In this case 

. 

For entire Dirichlet series  (see the Theorem 3.3).  Therefore, by the 

Theorem 3.21, the ratios (3.83) are hold if and only if 

                                       

.                            (3.84) 

But . Therefore from (3.84) follows (3. 82). In the case when the sequence 

 is non-decreasing, we have , so the ratio (3.84) and (3.82) are 

equivalent. The Corollary 3.13 is proved. 

 Since the definition of the order of the entire function and the logarithmic -

order  is defined by the convergence of the integral 

                                                   

 .                                     (3.85) 

 Corollary 3.14.  Let the entire Dirichlet series (3.1) have the finite logarithmic 

-order   and either , when , or (3.34) to hold. In 

order that (3.85) to hold, it is necessary and in the case when the sequence 
 

is non-decreasing it is sufficient, that  

                                             

.                        (3.86) 

 In fact, if (3.34) is hold, then from (3.35) and Cauchy’s inequality easily follows, 

that (3.85) takes place if and only if 
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.                                        

(3.87) 

 In the case, when , , we obtain the same conclusion 

on the basis of the Corollary 3.8 from the Theorem 3.11 with  for all 

sufficiently  large .  

 If we take , then  

 

and by the Theorem 3.2, the ratio (3.17) is hold if and only if 

. 

Further proof of the Corollary 2 is the same as the Corollary 1.  

 Let's consider the Dirichlet series, absolutely convergent in the half-plane 

. For such series of the finite logarithmic -order , the 

convergence class is defined by the convergence of the integral 

                                                

.                                   (3.88) 

 Corollary 3.15.  Let the absolutely convergent in the half-plane  

Dirichlet series (3.1) have the finite logarithmic -order  and either 

                                                     

 ,                                        (3.89) 

or .   In order that the relation (3.88) to hold, it is necessary, 

and in the case, when the sequence  is non-decreasing, it is sufficient that 
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.                            (3.90) 

 In fact, if the condition (3.89) takes place, then firstly , and 

secondly , where , i. e. (3.56) is hold with  

and .  Therefore, by the Corollary 3.1 from the Theorem 3.3 , and by 

the Theorem 3.15, the inequality (3.57) is true, from which in this case for all  

we have  

, 

i.e. 

. 

Since , then the last integral in this inequality is convergent, and therefore, 

taking into account the Cauchy’s inequality , we see that the ratio (3.88) is equivalent 

to the ratio 

                                                    

.                               (3.91) 

 If , then by the Corollary  4 , and by the 

Corollary 3.9 from the Theorem 3.28 we have (3.42) with , whence the 

equivalence of the relations (3.88) and (3.91) again follows. 

 Let's choose . If , then the function  is non-decreasing 

on and 
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.                                    (3.92) 

Therefore, by the Theorem 3.21, the ratio (3.91) is hold if and only if 

                                         

.                            (3.93) 

Since   and , then from (3. 93) follows (3.90). In the 

case when the sequence is non-decreasing, we obtain 
 
and therefore 

the relations (3.93) and (3.90) equivalent. The Collorary 3 for  is completely 

proved. 

 If , the function is decreasing and we can not refer to the Theorem 

3.2. But from (3.92) it is clear that in this case the function , when , is 

convex. By the Theorem 3.1 the conclusion of the Theorem 3.21 is true and, hence, the 

conclusion of the Corollary 3. 15 takes place.  

 Suppose that the absolutely convergent in the half-plane  the 

Dirichlet series (3.1) has a finite R-order , and the convergence class is defined 

by the convergence of the integral  

                                              

 .                                  (3.94) 

 Corollary 3. 16.  Let  and the Dirichlet series (3.1) have 

a zero abscissa of absolute convergence. In order that the relation (3.48) to hold, it is 

necessary, and in the case, when the sequence  is non-decreasing, it is 

sufficient that 
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It follows that (3.94) takes place if and only if  

                                               

,                                  (3.96) 

i. e. (3.78) is hold with . It is easy to see, that the function  

is increasing on  and  

. 

Using the L’Hopital’s rules, we obtain 

. 

Therefore 

, 

and by the Theorem 3.21, the relation (3.96) is hold if and only if, when 

. 

The further proof of the  Collorary 3.16 is the same as the proof of the Collorary 3.15. 

 

Control questions 

 

1. Give the formulas for calculating the convergence abscissa of the Dirichlet 

series. 
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2. Formulate the three-lines theorem. 

3. Formulate the definition of the maximum term and the central index of the 

Dirichlet series. 

4. Give the formulas for calculating the R-order and R-type of the Dirichlet  

series. 

5. Give the definition of the order and type of absolutely convergent in the half-

plane Dirichlet series. 

6. Formulate the definition of the convergence class of the entire function. 

 

Examples of problem solving 

 

1. Find the abscissas of convergence and the absolute convergence of the series 

. 

If  in our case , then 

. 

 

Tasks for independent work 

 

Find the abscissas of convergence and the absolute convergence of the series: 

a) .     Answer: ;  

b) .     Answer:  ;  
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c) .     Answer:  ;  

d) .     Answer:  ;  

e) .     Answer: ;  

f) .     Answer: ;  

g) .     Answer: ;  

h) .     Answer: ;  

i) .     Answer: .  
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